Шпаргалка «Экзаменационная» по Физике (Дроздов С. А.)

Кирилл Николоев сб, 12.03.2016 13:39

1. Электростатическое поле в вакууме. Напряженность Эл. поля. Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружающем электрические заряды, существует силовое поле. Электрические поля, которые создаются неподвижными электрическими зарядами и называются электростатическими.Для исследования электростатического поля используется пробный точечный положительный заряд — такой заряд, который не искажает исследуемое поле. Если в поле, создаваемое зарядом Q, поместить пробный заряд Q0, то на него действует сила F, различная в разных точках поля, которая, согласно закону Кулона, пропорциональна пробному заряду Q0. Поэтому отношение F/Q0 не зависит от Q0 и характеризует электростатическое поле в той точке, где пробный заряд находится. Эта величина называется напряженностью и является силовой характеристикой электростатического поля.

Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля E=F/Q0. Направление вектора Е совпадает с направлением силы, действующей на положительный заряд

Графически электростатическое поле изображают с помощью линий напряженности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е . Линиям напряженности приписывается направление, совпадающее с направлением вектора напряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Величина

называется потоком вектора напряженности через площадку dS. 4. Теорема Острогадского-Гаусса. Эл. поле заряженной плоскости, цилиндрич. и сферич. поверхностей Формула выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскостьзаряжена с постоянной поверхностной плотностью + (=dQ/dS — заряд, приход. на един. пл-сти). Линии напряженности перпендикулярны плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (соs=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен S. Согласно теореме Гаусса 2ES=S/0, откуда E=σ/(2ε0)Из формулы вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.

Поле двух бесконечных параллельных разноименно заряженных плоскостей. E=σ/2ε0 Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +. Благодаря равномер-ному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому линии напряженности направлены радиально. Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса , откуда При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда.

Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 131) заряжен равномерно с линейной плотностью  ( = dQ/dV – заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность равен 2rlЕ. По теореме Гаусса при r>R 2rlЕ = l/0, откуда Если r0;

Скачать файлы

Похожие документы