Всё для Учёбы — студенческий файлообменник
1 монета
doc

Курсовая «Статистические методы обработки экспериментальных данных» по Математике (Беклемишев Н. Д.)

Министерство образования Российской Федерации

Московский государственный университет печати

Факультет полиграфической технологии

Дисциплина: Математика

Курсовая работа по теме:

«Статистические методы обработки

Экспериментальных данных»

Выполнила; студент

курс

группа форма обучения

Номер зачетной книжки

Вариант № 9 Допущено к защите

Дата защиты

Результат защиты

Подпись преподавателя

Москва – 2008 год

1. Построение интервального и точечного статистических распределений результатов наблюдений. Построение полигона и гистограммы относительных частот.

i – порядковый номер;

Ii – интервал разбиения;

xi – середина интервала Ii;

ni – частота (количество результатов наблюдений, принадлежащих данному интервалу Ii);

wi = - относительная частота (n = - объём выборки);

Hi = - плотность относительной частоты (h – шаг разбиения, т.е. длина интервала Ii).

i Ii xi ni wi Hi

1 2 3 4 5 6

7 8

9 10 11 1,2;3,2

3,2;5,2 5,2;7,2

7,2;9,2 9,2;11,2

11,2;13,2

13,2;15,2 15,2;17,2

17,2;19,2 19,2;21,2

21,2;23,2 2,2 4,2

6,2 8,2

10,2 12,2 14,2

16,2 18,2 20,2

22,2 5 9 16 23

25 30

22 20 16 8 6 1/36

1/20 4/45 23/180

5/36 1/6 11/90

1/9 4/45

2/45 1/30 1/72 1/40

2/45 23/360 5/72

1/12 11/180 1/18

2/45

1/45 1/60

Объём выборки:

n = =180,

wi = ni/180;

контроль: =1

Длина интервала

разбиения (шаг):

h = 2 ,

Hi =

 : 180 1,00

Статистическим распределением называется соответствие между результатами наблюдений (измерений) и их частотами и относительными частотами. Интервальное распределение – это наборы троек (Ii ; ni ; wi) для всех номеров i, а точечное – наборы троек (xi ; ni ; wi). Таким образом, в таблице имеются оба – и интервальное, и точечное - статистическое распределения.

Далее, строим полигон и гистограмму относительных частот.

Полигон. Гистограмма.

Полигон относительных частот – ломаная, отрезки которой последовательно (в порядке возрастания xi) соединяют точки (xi ; wi). Гистограмма относительных частот – фигура, которая строится следующим образом: на каждом интервале Ii, как на основании, строится прямоугольник, площадь которого равна относительной частоте wi; отсюда следует, что высота этого прямоугольника равна Hi = wi/h – плотности относительной частоты. Полигон и гистограмма являются формами графического изображения статистического распределения.

2. Нахождение точечных оценок математического ожидания и

дисперсии.

В качестве точечных оценок числовых характеристик изучаемой случайной величины используются:

- для математического ожидания

= (выборочная средняя),

- для дисперсии

s2 = (исправленная выборочная),

где n – объём выборки, ni – частота значения xi .

Таким образом, в статистических расчетах используют приближенные равенства

MX  , DX  s2 .

Нахождение точечных оценок математического ожидания и дисперсии по данным варианта осуществим с помощью расчетной таблицы.

i xi ni xi ni xiwi (xi - )2 ni

1 2 3 4 5

6 7

8 9 10 11 2.2

4.2 6.2 8.2 10.2

12.2 14.2 16.2

18.2

20.2 22.2 5 9 16

23 25 30 22 20

16 8 6 11 37.8

99.2

188.6 255 366 312.4

324 291.2 161.6

133.2 0,06 0,21

0,55

1,05 1,42 2,03

1,74 1,8 1,62 0,9

0,74 491,04 312,84

174,64

76,44 18,24 0,04

21,84 83,64 185,44

327,44 509,04

= = 12,11

s2 = =

= 2200,45*1/180=12,22

 : 180 956 12,11 2200,45

3.Выдвижение гипотезы о распределении случайной величины.

При выдвижении гипотезы (предположения) о законе распределения изучаемой случайной величины мы опираемся лишь на внешний вид статистического распределения. Т.е. будем руководствоваться тем, что профиль графика плотности теоретического распределения должен соответствовать профилю гистограммы: если середины верхних сторон прямоугольников, образующих гистограмму, соединить плавной кривой, то эта линия представляет в первом приближении график плотности распределения вероятностей.

Итак, изобразим график и выпишем формулу плотности нормального (или гауссовского) распределения с параметрами а и , -   а  + ,

Сравнение построенной гистограммы и графика плотности распределения приводит к следующему заключению о предполагаемом (теоретическом) законе распределения в рассматриваемом варианте исходных данных:

Вариант 9 – нормальное (или гауссовское распределение)

4.Построение графика теоретической плотности распределения.

Чтобы выписать плотность теоретического (предполагаемого) распределения, нужно определить значения параметров и а и подставить их в соответствующую формулу. Все параметры тесно связаны с числовыми характеристиками случайной величины, т.е.

MX = а ,

DX =

Поскольку значения математического ожидания и дисперсии неизвестны, то их заменяют соответствующими точечными оценками, т.е. используют (уже упомянутые ранее) приближенные равенства MX  , DX  s2 , что позволяет найти значения параметров распределения.

По исходным данным была выдвинута гипотеза о нормальном распределении изучаемой случайной величины. Найдем параметры этого распределения:

_ x = а, 12,11=а, а=12,11,

s2= 12,22= σ=3,5

Следовательно, плотность предполагаемого распределения задается формулой

F(x)= [1/(7.54*√2π)]*e^[-(x-12.11)^2/2*(3.5)^2)]=0.053*e^(24,5/((x-12,11)^2))

Теперь необходимо вычислить значения f(xi) плотности f (x) при x=xi (в серединах интервалов) Для этого воспользуемся следующей схемой:

значения фунцкии

при u=ui находятся, например, с помощью таблицы, имеющейся в любом учебнике или задачнике по теории вероятностей и математической статистике.

xi Φ(ui)

2.2 4.2 6.2 8.2

10.2

12.2 14.2 16.2

18.2 20.2 22.2 -2.83

-2.26 -1.69 -1.12

-0.55

0.03 0.60 1.17

1.74 2.31 2.88 0,4977

0,4881 0,4545 0,3686

0,2088

0,0120 0,2257 0,3790

0,4591 0,4896 0,4980 0,1422

0,1395 0,1299 0,1053

0,0597

0,0034 0,0645 0,1083

0,1312 0,1399 0,1423

Далее, на одном чертеже строим гистограмму и график теоретической плотности распределения: гистограмма была построена ранее, а для получения графика плотности наносим точки с координатами (xi ; f(xi)) и соединяем их плавной кривой.

5.Проверка гипотезы о распределении с помощью критерия согласия Пирсона.

Ранее была выдвинута гипотеза о законе распределения рассматриваемой случайной величины. Сопоставление статистического распределения (гистограмма) и предполагаемого теоретического (графика плотности) показывает наличие некоторых расхождений между ними. Поэтому возникает естественный вопрос: чем объясняются эти несовпадения? Ответить на него можно двояко:

1) Указанные расхождения несущественны и вызваны ограниченным количеством наблюдений и случайными факторами – случайностью результата единичного наблюдения, способа группировки данных и т.п. В этом случае выдвинутая гипотеза о распределении считается правдоподобной и принимается как не противоречащая опытным данным.

2) Указанные расхождения являются существенными (неслучайными) и связаны с тем, что действительное распределение случайной величины отличается от предполагаемого. В этом случае выдвинутая гипотеза о распределении отвергается как плохо согласующаяся данными наблюдений.

Для выбора первого или второго варианта ответа и служат так называемые критерии согласия. Словари толкуют слово критерий (от греч. kriterion – средство для суждения) как признак, на основании которого производится оценка, определение и классификация чего-либо.

Существуют различные критерии согласия: К. Пирсона, А.Н. Колмогорова, Н.В. Смирнова, В.И. Романовского и другие. Мы рассмотрим лишь один из них – критерий Пирсона, называемый также критерием 2 («хи - квадрат»). (К. Пирсон (1857 - 1936) – английский математик, биолог, философ – позитивист.)

Критерий Пирсона выгодно отличается от остальных, во – первых, применимостью к любым (дискретным, непрерывным) распределениям и, во – вторых, простотой вычислительного алгоритма.

Правило проверки статистических гипотез с помощью критерия Пирсона будет объяснено на примерах.

Группировка исходных данных.

Применяется критерий Пирсона к сгруппированным данным. Предположим, что произведено n независимых опытов, в каждом из которых изучаемая случайная величина приняла определенное значение. Предположим, что вся числовая ось разбита на несколько непересекающихся промежутков (интервалов и полуинтервалов). Обозначим через I количество результатов измерений (значений случайной величины), попавших в i-й промежуток. Очевидно, что I = n.

Отметим, что критерий 2 будет давать удовлетворительный для практических приложений результат, если:

1) количество n опытов достаточно велико, по крайней мере n100;

2) в каждом промежутке окажется не менее 5…10 результатов измерений, т.е. i 5 при любом i; если количество полученных значений в отдельных промежутках мало (меньше 5), то такие промежутки следует объединить с соседними, суммируя соответствующие частоты.

Пусть концами построенного разбиения являются точки zi , где z1  z2  …  zi – 1 , т.е. само разбиение имеет вид

(-   z0; z1) ,  z1; z2) ,  z2; z3) , … ,  zi – 1; zi   ).

После объединения соответствующих промежутков (последних двух) и замены самой левой границы разбиения на - , а самой правой на +  (поскольку на промежутки должна разбиваться вся числовая ось, а не только диапазон полученных в результате опыта значений), мы приходим к следующим интервальным распределениям, пригодным для непосредственного применения критерия Пирсона:

zi –1; zi - ; 3,2 3,2;5,2 5,2;7,2 7,2;9,2 9,2;11,2 11,2;13,2

i 5 9 16 23 25 30

13,2;15,2 15,2;17,2 17,2;19,2 19,2;21,2 21,2;+∞

22 20 16 8 6

Вычисление теоретических частот.

Критерий Пирсона основан на сравнении эмпирических (опытных) частот с теоретическими. Эмпирические частоты I определяются по фактическим результатам наблюдений. Теоретические частоты, обозначаемые далее , находятся с помощью равенства

= n  pi ,

где n – количество испытаний, а pi   zi –1  x  zi - теоретическая вероятность попадания значений случайной величины в i-й промежуток (1  i  1).Теоретические вероятности вычисляются в условиях выдвинутой гипотезы о законе распределения изучаемой случайной величины.

Процедура отыскания теоретических вероятностей и частот показана в расчетной таблице: _

n = 180; а=x= 12,11; σ= s=3,5

i Концы промежутков Аргументы фунцкции Ф0 Значения функции Ф0 Pi= Ф0(ui)- Ф0(ui-1) ν1’=npi

zi -1 zi Ui-1= (zi-1-x)/s Ui=

(zi-x)/s Ф0(ui-1) Ф0(ui)

1 2 3 4 5 6

7 8

9 10 11 -∞ 3,2

5,2 7,2 9,2 11,2

13,2 15,2 17,2

19,2

21,2 3,2 5,2 7,2

9,2 11,2 13,2 15,2

17,2 19,2 21,2

+∞ -∞

-2,55 -1,97 -1,40

-0,83 -0,26 0,31

0,88 1,45 2,03

2,60

-2,55 -1,97 -1,40

-0,83 -0,26 0,31

0,88 1,45 2,03

2,60

+∞ -0,5 -0,4946

-0,4756 -0,4192

-0,2967 -0,1026

0,1217

0,3106 0,4265 0,4788

0,4953 -0,4946

-0,4756 -0,4192

-0,2967

-0,1026 0,1217 0,3106

0,4265 0,4788 0,4953

0,5 0,0054 0,019

0,0564

0,1225 0,1941 0,2243

0,1889 0,1159 0,0523

0,0165 0,0047 0,972

3,42

10,152 22,05 34,938

40,374 34,002 20,862

9,414 2,97 0,846

: 1,0000 180,00

Статистика 2 и вычисление ее значения по опытным данным.

Для того чтобы принять или отвергнуть гипотезу о законе распределения изучаемой случайной величины, в каждом из критериев согласия рассматривается некоторая (специальным образом подбираемая) величина, характеризующая степень расхождения теоретического (предполагаемого) и статистического распределения.

В критерии Пирсона в качестве такой меры расхождения используется величина

,

называемая статистикой «хи - квадрат» или статистикой Пирсона (вообще, статистикой называют любую функцию от результатов наблюдений). Ясно, что всегда 2 , причем 2 = 0, тогда и только тогда, когда при каждом i , т.е. когда все соответствующие эмпирические и теоретические частоты совпадают. Во всех остальных случаях 2 ; при этом значение 2 тем больше, чем больше различаются эмпирические и теоретические частоты.

Прежде чем рассказать о применении статистики 2 к проверке гипотезы о закон е распределения , вычислим ее значение для данного варианта; это значение, найденное по данным наблюдений и в рамках выдвинутой гипотезы, будем обозначать через 2набл..

i i

1 2 3 4 5

6 7 8 9 10 11 5

9 16 23 25 30

22 20

16 8 6 0,972

3,42 10,152 22,05

34,938 40,374 34,002

20,862

9,414 2,97 0,846

16,69 9,10 3,37

0,04 2,83 2,67

4,24

0,04 4,61 8,52

31,40 : 180 180 83,50

2набл. = 83,50

5.4. Распределение статистики 2.

Случайная величина имеет 2 – распределение с r степенями свободы (r = 1; 2; 3; …), если ее плотность имеет вид

где cr – которая положительная постоянная ( cr определяется из равенства ). Случайная величина, имеющая распределение 2 с r степенями свободы, будет обозначаться .

Для дальнейшего изложения важно лишь отметить, что, во – первых, распределение определяется одним параметром – числом r степеней свободы и, во – вторых, существуют таблицы, позволяющие произвольно найти вероятность попадания значений случайной величины в любой промежуток.

Вернемся теперь к статистике . Отметим, что она является случайной величиной, поскольку зависит от результатов наблюдений и, следовательно, в различных сериях опытов принимает различные, заранее не известные значения. Понятно, кроме того, закон распределения статистики зависит: 1) от действительного (но неизвестного нам) закона распределения случайной величины, измерения которой осуществляются (им определяются эмпирические частоты ) ; 2) от количества произведенных наблюдений (от числа n) и от способа разбиения числовой оси на промежутки (в частности, от числа i ); 3) от теоретического (выдвинутого в качестве гипотезы) закона распределения изучаемой случайной величины (им определяются теоретические вероятности pi и теоретические частоты = n  pi )

Если выдвинутая гипотеза верна, то очевидно, закон распределения статистики зависти только от закона распределения изучаемой случайной величины, от числа n и от выбора промежутков разбиения. Но на самом же деле, в этом случае (благодаря мастерски подобранному Пирсоном выражению для ) справедливо куда более серьезное утверждение. А именно, при достаточно больших n закон распределения статистики практически не зависит от закона распределения изучаемой случайной величины и ни от количества n произведенных опытов: при распределение статистики стремится к - распределению с r степенями свободы. Эта теорема объясняет, почему статистика Пирсона обозначается через .

Если в качестве предполагаемого выбрано одно их трех основных непрерывных распределений (нормальное, показательное или равномерное), то r = i – 3, где i – количество промежутков, на которые разбита числовая ось (количество групп опытных данных). В общем случае

где - количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками.

Т.е. в данном варианте после группировки исходных данных получаем количество промежутков разбиения i = 10, = 2, т.к. количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками, = 2 – это а и  для нормального распределения.

Следовательно

R=i-Nпар-1=11-2-1=8

5.5. Правило проверки гипотезы о законе распределения случайной величины.

Ранее отмечалось (и этот факт очевиден), что статистика принимает только не отрицательные значения (всегда 2 ), причем в нуль она обращается в одном – единственном случае – при совпадении всех соответствующих эмпирических и теоретических частот (т.е. при для каждого i).

Если выдвинутая гипотеза о законе распределения изучаемой случайной величины соответствует действительности, то эмпирические и теоретические частоты должны быть примерно одинаковы, а значит, значения статистики будут группироваться около нуля. Если же выдвинутая гипотеза ложна, то эмпирические и соответствующие теоретические частоты будут существенно разниться, что приведет к достаточно большим отклонениям от нуля значений .

Поэтому хотелось бы найти тот рубеж – называемый критическим значением (или критической точкой) и обозначаемый через , который разбил бы всю область возможных значений статистики на два непересекающихся подмножества: область принятия гипотезы, характеризующаяся неравенством , и критическую область (или область отвержения гипотезы), определяемую неравенством .

Область принятия Критическая область

гипотезы

0 Как же найти критическое значение ?

Если выдвинутая гипотеза о законе распределения изучаемой случайной величины верна, то вероятность попадания значений статистики в критическую область должна быть мала, так что событие { } должно быть практически неосуществимым в единичном испытании. Эта вероятность, обозначим ее через :

называется уровнем значимости.

Чтобы определить критическое значение , поступим следующим образом. Зададим какое – либо малое значение уровня значимости (как правило = 0,05 или = 0,01) и найдем как уровень уравнения

с неизвестной x. Поскольку распределение статистики близко при к - распределению с r степенями свободы, то

и приближенное значение можно найти из уравнения

Геометрические соображения показывают, что последнее уравнение имеет единственное решение: его корень – это такое число x , при котором площадь под графиком функции (плотности - распределения) над участком равна. На практике решение последнего уравнения находят с помощью специальных таблиц, имеющихся в любом руководстве по математической статистике; эти таблицы позволяют по двум входным параметрам – уровню значимости и числу степеней свободы r определить критическое значение . (Находимое таким образом критическое значение зависит, конечно, от и r,что при необходимости отражают и в обозначениях: ).

Зададим уровень значимости как = 0,05 (условие курсовой работы) .

Подводя итоги, сформулируем правило проверки гипотезы о законе распределения случайной величины с помощью - критерия Пирсона:

1) Проводят n независимых наблюдений случайной величины (принято считать, что должно быть n  100).

2) Разбивают всю числовую ось на несколько (как правило, на 8…12) промежутков

так, чтобы количество измерений в каждом из них (называемое эмпирической

частотой ) оказалось не менее пяти (т.е.  5 при каждом i).

3) Выдвигают (например, судя по профилю гистограммы) гипотезу о законе распределения изучаемой случайной величины и находят параметры этого закона (чаще всего, заменяя математическое ожидание и дисперсию их оценками).

4) С помощью предполагаемого (теоретического) распределения находят теоретические вероятности pi и теоретические частоты = n  pi попадания значений случайной величины в i-й промежуток.

5) По эмпирическим и теоретическим частотам вычисляют значения статистики , обозначаемое через 2набл..

6) Определяют число r степеней свободы.

7) Используя заданное значение уровня значимости и найденное число степеней свободы r, по таблице находят (на пересечении строки, отвечающей r, и столбца, отвечающего ) критическое значение .

8) Формулируя вывод, опираясь на основной принцип проверки статистических гипотез:

если наблюдаемое значение критерия принадлежит критической области, т.е. если , то гипотезу отвергают как плохо согласующуюся с результатами эксперимента;

если наблюдаемое значение критерия принадлежит области принятия гипотезы, т.е. , то гипотезу принимают как не противоречащую результатам эксперимента.

5.6. Вывод о соответствии выдвинутой гипотезы и опытных данных в варианте.

Правило проверки выдвинутой гипотезы о законе распределения изучаемой случайной величины для данного варианта реализовано в таблице:

Название величины Обозначение и числовое значение величины

Уровень значимости (задан в условии) = 0,05

Количество промежутков разбиения l =11

Число степеней свободы r=8

Критическое значение (находится по таблице) = 15,51

Наблюдаемое значение критерия 2набл. = 83,5

ВЫВОД Гипотеза не принимается для данного 9 варианта, поскольку : 83,5

Показать полностью…
Похожие документы в приложении