Всё для Учёбы — студенческий файлообменник
1 монета
doc

Курсовая «Построение полигона и гистограммы относительных частот» по Теории вероятностей и математической статистике (Джваршейшвили И. А.)

Курсовая по теории вероятности. Вариант №5

Вариант № 5

10,2;10,4 10,4;10,6 10,6;10,8 10,8;11 11;11,2 11,2;11,4 11,4;11,6

4 6 8 10 12 20 14

11,6;11,8 11,8;12 12;12,2 12,2;12,4

9 7 5 5 1. Построение интервального и точечного статистических распределений результатов наблюдений. Построение полигона и гистограммы относительных частот.

i – порядковый номер;

Ii – интервал разбиения;

xi – середина интервала Ii;

ni – частота (количество результатов наблюдений, принадлежащих данному интервалу Ii);

wi = - относительная частота (n = - объём выборки);

Hi = - плотность относительной частоты (h – шаг разбиения, т.е. длина интервала Ii).

i Ii xi ni wi Hi

1 2 3 4 5 6

7 8 9 10 11 10,2;10,4

10,4;10,6 10,6;10,8

10,8;11

11;11,2 11,2;11,4

11,4;11,6 11,6;11,8

11,8;12 12;12,2

12,2;12,4 10,3

10,5 10,7 10,9

11,1 11,3 11,5

11,7 11,9 12,1

12,3 4

6 8 10 12 20

14 9 7 5 5 0,04

0,06 0,08 0,1 0,12

0,2 0,14

0,09 0,07 0,05

0,05 0,2 0,3 0,4

0,5 0,6 1 0,7

0,45

0,35 0,25 0,25

Объём выборки:

n = =100,

wi = ;

контроль: =1

Длина интервала

разбиения (шаг):

h = 0,2

Hi =

 : 100 1,00

Статистическим распределением называется соответствие между результатами наблюдений (измерений) и их частотами и относительными частотами. Интервальное распределение – это наборы троек (Ii ; ni ; wi) для всех номеров i, а точечное – наборы троек (xi ; ni ; wi). Таким образом, в таблице имеются оба – и интервальное, и точечное - статистическое распределения.

Далее, строим полигон и гистограмму относительных частот.

Полигон.

Гистограмма.

Полигон относительных частот – ломаная, отрезки которой последовательно (в порядке возрастания xi) соединяют точки (xi ; wi). Гистограмма относительных частот – фигура, которая строится следующим образом: на каждом интервале Ii, как на основании, строится прямоугольник, площадь которого равна относительной частоте wi; отсюда следует, что высота этого прямоугольника равна Hi = wi/h – плотности относительной частоты. Полигон и гистограмма являются формами графического изображения статистического распределения.

2. Нахождение точечных оценок математического ожидания и

дисперсии.

В качестве точечных оценок числовых характеристик изучаемой случайной величины используются:

- для математического ожидания

= (выборочная средняя),

- для дисперсии

s2 = (исправленная выборочная),

где n – объём выборки, ni – частота значения xi .

Таким образом, в статистических расчетах используют приближенные равенства

MX  , DX  s2 .

Нахождение точечных оценок математического ожидания и дисперсии по данным варианта осуществим с помощью расчетной таблицы.

i xi ni xi ni (xi - )2 ni

1 2 3 4 5

6 7

8 9 10 11 10,3

10,5 10,7 10,9

11,1 11,3 11,5

11,7

11,9 12,1 12,3 4

6 8 10 12 20

14 9 7 5 5 41,2

63 85,6

109 133,2 226 161

105,3 83,3 60,5

61,5 4 3,84 2,88

1,6 0,48

0 0,56 1,44 2,56

3,2 5

= = = 11,3

s2 = =

= =0,26

 : 100 1129,6 25,56

3.Выдвижение гипотезы о распределении случайной величины.

При выдвижении гипотезы (предположения) о законе распределения изучаемой случайной величины мы опираемся лишь на внешний вид статистического распределения. Т.е. будем руководствоваться тем, что профиль графика плотности теоретического распределения должен соответствовать профилю гистограммы: если середины верхних сторон прямоугольников, образующих гистограмму, соединить плавной кривой, то эта линия представляет в первом приближении график плотности распределения вероятностей.

Итак, изобразим график и выпишем формулу плотности нормального (или гауссовское) распределение с параметрами а и , -    + ,

Сравнение построенной гистограммы и графика плотности распределения приводит к следующему заключению о предполагаемом (теоретическом) законе распределения в рассматриваемом варианте исходных данных:

Вариант № 5 – показательное распределение.

4.Построение графика теоретической плотности распределения.

Чтобы выписать плотность теоретического (предполагаемого) распределения, нужно определить значения параметров а и и подставить их в соответствующую формулу. Все параметры тесно связаны с числовыми характеристиками случайной величины, т.е.

MX =а

DX =

Поскольку значения математического ожидания и дисперсии неизвестны, то их заменяют соответствующими точечными оценками, т.е. используют (уже упомянутые ранее) приближенные равенства MX  , DX  s2 , что позволяет найти значения параметров распределения.

По исходным данным была выдвинута гипотеза о нормальном распределении изучаемой случайной величины. Найдем параметры этого распределения:

Следовательно, плотность предполагаемого распределения задается формулой

f (x) =.

Теперь необходимо вычислить значения f(xi) плотности F(x) при x=xi (в серединах интервалов). Для этого воспользуемся следующей схемой:

xi

10.3 10.5 10.7

10.9

11.1 11.3 11.5

11.7 11.9 12.1

12.3 -1.96 -1.57

-1.18

-0.78 -0.39 0 0.39

0.78 1.18 1.57

1.96 0.0584 0.1163

0.1989

0.2943 0.3697 0.3989

0.3697 0.2943 0.1989

0.1163 0.0584 0.112

0.228

0.394 0.577 0.728

0.782 0.716 0.559

0.376 0.214 0.104

Далее, на одном чертеже строим гистограмму и график теоретической плотности распределения: гистограмма была построена ранее, а для получения графика плотности наносим точки с координатами (x ; f(x )) и соединяем их плавной кривой.

5.Проверка гипотезы о распределении с помощью критерия согласия Пирсона.

Ранее была выдвинута гипотеза о законе распределения рассматриваемой случайной величины. Сопоставление статистического распределения (гистограмма) и предполагаемого теоретического (графика плотности) показывает наличие некоторых расхождений между ними. Поэтому возникает естественный вопрос: чем объясняются эти несовпадения? Ответить на него можно двояко:

1) Указанные расхождения несущественны и вызваны ограниченным количеством наблюдений и случайными факторами – случайностью результата единичного наблюдения, способа группировки данных и т.п. В этом случае выдвинутая гипотеза о распределении считается правдоподобной и принимается как не противоречащая опытным данным.

2) Указанные расхождения являются существенными (неслучайными) и связаны с тем, что действительное распределение случайной величины отличается от предполагаемого. В этом случае выдвинутая гипотеза о распределении отвергается как плохо согласующаяся данными наблюдений.

Для выбора первого или второго варианта ответа и служат так называемые критерии согласия. Словари толкуют слово критерий (от греч. kriterion – средство для суждения) как признак, на основании которого производится оценка, определение и классификация чего-либо.

Существуют различные критерии согласия: К. Пирсона, А.Н. Колмогорова, Н.В. Смирнова, В.И. Романовского и другие. Мы рассмотрим лишь один из них – критерий Пирсона, называемый также критерием 2 («хи - квадрат»). (К. Пирсон (1857 - 1936) – английский математик, биолог, философ – позитивист.)

Критерий Пирсона выгодно отличается от остальных, во – первых, применимостью к любым (дискретным, непрерывным) распределениям и, во – вторых, простотой вычислительного алгоритма.

Правило проверки статистических гипотез с помощью критерия Пирсона будет объяснено на примерах.

Группировка исходных данных.

Применяется критерий Пирсона к сгруппированным данным. Предположим, что произведено n независимых опытов, в каждом из которых изучаемая случайная величина приняла определенное значение. Предположим, что вся числовая ось разбита на несколько непересекающихся промежутков (интервалов и полуинтервалов). Обозначим через I ( - греческая буква «ню») количество результатов измерений (значений случайной величины), попавших в i-й промежуток. Очевидно, что I = n.

Отметим, что критерий 2 будет давать удовлетворительный для практических приложений результат, если:

1) количество n опытов достаточно велико, по крайней мере n100;

2) в каждом промежутке окажется не менее 5…10 результатов измерений, т.е. i 5 при любом i; если количество полученных значений в отдельных промежутках мало (меньше 5), то такие промежутки следует объединить с соседними, суммируя соответствующие частоты.

Пусть концами построенного разбиения являются точки zi , где z1  z2  …  zi – 1 , т.е. само разбиение имеет вид

(-   z0; z1) ,  z1; z2) ,  z2; z3) , … ,  zi – 1; zi   ).

После объединения соответствующих промежутков (последних двух) и замены самой левой границы разбиения на - , а самой правой на +  (поскольку на промежутки должна разбиваться вся числовая ось, а не только диапазон полученных в результате опыта значений), мы приходим к следующим интервальным распределениям, пригодным для непосредственного применения критерия Пирсона:

zi –1; zi - ; 10.4 10.4;10,6 10,6;10,8 10,8;11 11;11,2 11,2;11,4

i 4 6 8 10 12 20

11,4;11,6 11,6;11,8 11,8;+ 

14 9 7

Вычисление теоретических частот.

Критерий Пирсона основан на сравнении эмпирических (опытных) частот с теоретическими. Эмпирические частоты I определяются по фактическим результатам наблюдений. Теоретические частоты, обозначаемые далее , находятся с помощью равенства

= n  pi ,

где n – количество испытаний, а pi   zi –1  x  zi - теоретическая вероятность попадания значений случайной величины в i-й промежуток (1  i  1).Теоретические вероятности вычисляются в условиях выдвинутой гипотезы о законе распределения изучаемой случайной величины.

В данном варианте принята гипотеза о показательном распределении случайной величины. В этом случае теоретическая вероятность p при любом i вычисляется по одной из следующих трёх формул ( в зависимости от взаимного расположения i-го промежутка и числа x ):

Процедура отыскания теоретических вероятностей и частот показана в расчетной таблице:

i Концы промежутков Значение функции

zi -1 zi

1 2 3 4 5 6

7 8 9 

10,4 10,6 10,8

11 11,2

11,4 11,6 11,8

10,410,610,811

11,211,411,611,8+



-1,76 -1,37 -0,98

-0,59 -0,2 0,2

0,59 0,98 -1,76

-1,37

-0,98 -0,59 -0,2

0,2 0,59 0,98 + -0,5000

-0,4608 -0,4147

-0,3365

-0,2224 -0,0080

0,0080 0,2224 0,3365 -0,4608

-0,4147 -0,3365

-0,2224

-0,0080 0,0080 0,2224

0,3365 0,5000 0,9608

0,8755 0,7512 0,5589

0,2304

0,016 0,2144 0,1141

0,1635 96,08 87,55

75,12 55,89 23,04

1,6 21,44

11,41 16,35 : 3,8848 388,48

Статистика 2 и вычисление ее значения по опытным данным.

Для того чтобы принять или отвергнуть гипотезу о законе распределения изучаемой случайной величины, в каждом из критериев согласия рассматривается некоторая (специальным образом подбираемая) величина, характеризующая степень расхождения теоретического (предполагаемого) и статистического распределения.

В критерии Пирсона в качестве такой меры расхождения используется величина

,

называемая статистикой «хи - квадрат» или статистикой Пирсона (вообще, статистикой называют любую функцию от результатов наблюдений). Ясно, что всегда 2 , причем 2 = 0, тогда и только тогда, когда при каждом i , т.е. когда все соответствующие эмпирические и теоретические частоты совпадают. Во всех остальных случаях 2 ; при этом значение 2 тем больше, чем больше различаются эмпирические и теоретические частоты.

Прежде чем рассказать о применении статистики 2 к проверке гипотезы о закон е распределения , вычислим ее значение для данного варианта; это значение, найденное по данным наблюдений и в рамках выдвинутой гипотезы, будем обозначать через 2набл..

i i

1

2 3 4 5 6 7

8 9 4 6 8 10

12 20 14 9 7

96,08

87,55 75,12 55,89

23,04 1,6 21,44

11,41 16,35 88,25

75,96

59,97 37,68 5,29

211,6 2,58 0,51

5,35 : 90 388,48 487,19

2набл. = 1,25

5.4. Распределение статистики 2.

Случайная величина имеет 2 – распределение с r степенями свободы (r = 1; 2; 3; …), если ее плотность имеет вид

где cr – которая положительная постоянная ( cr определяется из равенства ). Случайная величина, имеющая распределение 2 с r степенями свободы, будет обозначаться .

Для дальнейшего изложения важно лишь отметить, что, во – первых, распределение определяется одним параметром – числом r степеней свободы и, во – вторых, существуют таблицы, позволяющие произвольно найти вероятность попадания значений случайной величины в любой промежуток.

Вернемся теперь к статистике . Отметим, что она является случайной величиной, поскольку зависит от результатов наблюдений и, следовательно, в различных сериях опытов принимает различные, заранее не известные значения. Понятно, кроме того, закон распределения статистики зависит: 1) от действительного (но неизвестного нам) закона распределения случайной величины, измерения которой осуществляются (им определяются эмпирические частоты ) ; 2) от количества произведенных наблюдений (от числа n) и от способа разбиения числовой оси на промежутки (в частности, от числа i ); 3) от теоретического (выдвинутого в качестве гипотезы) закона распределения изучаемой случайной величины (им определяются теоретические вероятности pi и теоретические частоты = n  pi )

Если выдвинутая гипотеза верна, то очевидно, закон распределения статистики зависти только от закона распределения изучаемой случайной величины, от числа n и от выбора промежутков разбиения. Но на самом же деле, в этом случае (благодаря мастерски подобранному Пирсоном выражению для ) справедливо куда более серьезное утверждение. А именно, при достаточно больших n закон распределения статистики практически не зависит от закона распределения изучаемой случайной величины и ни от количества n произведенных опытов: при распределение статистики стремится к - распределению с r степенями свободы. Эта теорема объясняет, почему статистика Пирсона обозначается через .

Если в качестве предполагаемого выбрано одно их трех основных непрерывных распределений (нормальное, показательное или равномерное), то r = i – 3, где i – количество промежутков, на которые разбита числовая ось (количество групп опытных данных). В общем случае

где - количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками.

Т.е. в данном варианте после группировки исходных данных получаем количество промежутков разбиения i = 10, = 2, т.к. количество параметров предполагаемого (теоретического) распределения, которые заменены вычисленными по опытным данным оценками, = 2 – это а и  для нормального распределения.

Следовательно

5.5. Правило проверки гипотезы о законе распределения случайной величины.

Ранее отмечалось (и этот факт очевиден), что статистика принимает только не отрицательные значения (всегда 2 ), причем в нуль она обращается в одном – единственном случае – при совпадении всех соответствующих эмпирических и теоретических частот (т.е. при для каждого i).

Если выдвинутая гипотеза о законе распределения изучаемой случайной величины соответствует действительности, то эмпирические и теоретические частоты должны быть примерно одинаковы, а значит, значения статистики будут группироваться около нуля. Если же выдвинутая гипотеза ложна, то эмпирические и соответствующие теоретические частоты будут существенно разниться, что приведет к достаточно большим отклонениям от нуля значений .

Поэтому хотелось бы найти тот рубеж – называемый критическим значением (или критической точкой) и обозначаемый через , который разбил бы всю область возможных значений статистики на два непересекающихся подмножества: область принятия гипотезы, характеризующаяся неравенством , и критическую область (или область отвержения гипотезы), определяемую неравенством .

Область принятия Критическая область

гипотезы

0 Как же найти критическое значение ?

Если выдвинутая гипотеза о законе распределения изучаемой случайной величины верна, то вероятность попадания значений статистики в критическую область должна быть мала, так что событие { } должно быть практически неосуществимым в единичном испытании. Эта вероятность, обозначим ее через :

называется уровнем значимости.

Чтобы определить критическое значение , поступим следующим образом. Зададим какое – либо малое значение уровня значимости (как правило = 0,05 или = 0,01) и найдем как уровень уравнения

с неизвестной x. Поскольку распределение статистики близко при к - распределению с r степенями свободы, то

и приближенное значение можно найти из уравнения

Геометрические соображения показывают, что последнее уравнение имеет единственное решение: его корень – это такое число x , при котором площадь под графиком функции (плотности - распределения) над участком равна. На практике решение последнего уравнения находят с помощью специальных таблиц, имеющихся в любом руководстве по математической статистике; эти таблицы позволяют по двум входным параметрам – уровню значимости и числу степеней свободы r определить критическое значение . (Находимое таким образом критическое значение зависит, конечно, от и r,что при необходимости отражают и в обозначениях: ).

Зададим уровень значимости как = 0,05 (условие курсовой работы) .

Подводя итоги, сформулируем правило проверки гипотезы о законе распределения случайной величины с помощью - критерия Пирсона:

1) Проводят n независимых наблюдений случайной величины (принято считать, что должно быть n  100).

2) Разбивают всю числовую ось на несколько (как правило, на 8…12) промежутков

так, чтобы количество измерений в каждом из них (называемое эмпирической

частотой ) оказалось не менее пяти (т.е.  5 при каждом i).

3) Выдвигают (например, судя по профилю гистограммы) гипотезу о законе распределения изучаемой случайной величины и находят параметры этого закона (чаще всего, заменяя математическое ожидание и дисперсию их оценками).

4) С помощью предполагаемого (теоретического) распределения находят теоретические вероятности pi и теоретические частоты = n  pi попадания значений случайной величины в i-й промежуток.

5) По эмпирическим и теоретическим частотам вычисляют значения статистики , обозначаемое через 2набл..

6) Определяют число r степеней свободы.

7) Используя заданное значение уровня значимости и найденное число степеней свободы r, по таблице находят (на пересечении строки, отвечающей r, и столбца, отвечающего ) критическое значение .

8) Формулируя вывод, опираясь на основной принцип проверки статистических гипотез:

если наблюдаемое значение критерия принадлежит критической области, т.е. если , то гипотезу отвергают как плохо согласующуюся с результатами эксперимента;

если наблюдаемое значение критерия принадлежит области принятия гипотезы, т.е. , то гипотезу принимают как не противоречащую результатам эксперимента.

5.6. Вывод о соответствии выдвинутой гипотезы и опытных данных в варианте.

Правило проверки выдвинутой гипотезы о законе распределения изучаемой случайной величины для данного варианта реализовано в таблице:

Название величины Обозначение и числовое значение величины

Уровень значимости (задан в условии) = 0,05

Количество промежутков разбиения l =10

Число степеней свободы r=7

Критическое значение (находится по таблице) = 12.59

Наблюдаемое значение критерия 2набл. = 1.25

ВЫВОД Гипотеза принимается для данного 5 варианта, поскольку : 1.25  12,59

Замечания: 1. Заданное значение уровня значимости = 0,05 означает, что

,

т.е. вероятность события { } очень мала. Однако это событие, обладая ненулевой вероятностью, и тогда (при = 0,05 примерно в 5% случаев) будет отвергнута правильная гипотеза. Отвержение гипотезы, когда она верна, называется ошибкой первого рода. Таким образом, уровень значимости - это вероятность ошибки первого рода. Отметим, что ошибкой второго рода называется принятие гипотезы в случае, когда она неверна.

2. Иногда вместо уровня значимости задается надежность :

т.е. - это вероятность попадания значений статистики в область принятия гипотезы. Поскольку события

{ } и

противоположны, то

Показать полностью…
Похожие документы в приложении