Всё для Учёбы — студенческий файлообменник
1 монета
doc

Лекции по Информационным технологиям (Иванько А. Ф.)

Конспект лекций по информатике

Понятие информатики и информационных технологий

Понятие информационных технологий включают в себя многообразие методов и способов управления концепции её формирования, а так же совокупность всех видов аппаратно-программных информационных средств.

Информационные технологии связывают с процессами сбора, обработки, хранения и целенаправленной передачи разнообразных данных организованными на базе современных вычислительных машин и систем; сетевых технологий; банков и баз данных и знаний; разнообразного системного, прикладного и проблемно-ориентированного программного обеспечения.

Применение информационных технологий в полиграфии

В издательской деятельности и полиграфии информационные технологии используются в информационных процессах, а также становятся производственными технологиями, так как на их основе создается конечный полиграфический продукт (книги, журналы).

Выделяют две стратегии внедрения новых информационных технологий:

1. Информационные технологии приспосабливаются к существующей организационно-технологической структуре предприятия, и происходит локальная модернизация сложных методов работы.

2. Организационно-технологическая структура модернизируется таким образом, чтобы информационные технологии давали наибольшую эффективность.

Для новых информационных технологий характерно следующее:

1. Работа пользователя осуществляется в режиме взаимодействия современными программными проф. продуктами максимально адаптированными к конкретным интегрированным технологическим операциям.

2. Осуществляется информационная поддержка на всех этапах подготовки и обработки информации на основе интегрированных баз или баз данных предусматривающих единую унифицированную структуру представления данных, организация их хранения, поиска, восстановления и защиты.

3. Безбумажный процесс обработки информации, при котором на бумаге фиксируется лишь окончательный вариант информации. Все остальные верстки документов или материалов представлены в машинных кодах на специальных носителях.

4. Интерактивный режим работы пользователя с использованием интерактивной поддержки

Стадия допечатных процессов

Применение информационных технологий на стадии допечатных процессов характеризуется широким внедрение ПК в решение задач набора и обработки текста. В комплексе с лазерными сканирующими и выводными устройствами ПК изменили лицо полиграфических предприятий и частично или полностью переместили процесс набора текста в творческую и издательскую сферу. Современные системы допечатной подготовки информации строятся по модульному принципу и позволяют выполнять следующие функции:

1. Автоматизировать обработку текста, включая те функции, которые ранее выполнялись только человеком, т.е. корректуру, перевод, реферирование.

2. Трансформация цветной и графической изобразительной информации.

3. Получение цветоделенных форм.

4. Получение готовых форм.

5. Получение пробных оттисков на цифровых печатающих устройствах.

6. Прямое перенесение изображения в печатную секцию, минуя формные процессы.

Этап печатных и отделочных процессов

В настоящее время появились интегрированные системы для организации печатных и отделочных процессов в полиграфии. Созданы печатные машины с лазерной технологией нанесения изображения на формные пластины. На цифровой технологии базируются системы, применяемые в печатных машинах для дозирования количества краски для дозирования температуры красочных аппаратов машин. Появление новых методов печати сделало экономически целесообразным выполнение малых тиражей.

Цифровые методы печати дают возможность применения новых методов для оценки качества полиграфической продукции.

В результате влияния современных технологий на допечатные процессы полиграфического производства в нем реализуются 4 способа построения технологий:

1. Классический – текст набирается отдельно, а иллюстрации при помощи фоторепродукционных аппаратов выводятся на 4 цветоделенные формы. Монтаж и изготовление фотоформ процесс очень трудоемкий и длительный.

2. Метод от компьютера до полиграфической фотоформы. Этот метод предусматривает совместную обработку текста и иллюстраций. Этот способ весьма распространен.

3. Метод от компьютера до печатной формы. Этот метод использует принципы получения печатной формы непосредственно от компьютера. Преимуществом этого способа является сокращение длительности процесса на одну технологическую операцию, так как нет необходимости изготавливать полноформатную фотоформу. К недостаткам этого метода относится необходимость повторного изготовления печатной формы в случае обнаружения ошибок или дефектов, что по сравнению с корректурой на фотопленке увеличивает стоимость издания.

4. Метод от компьютера до бумаги. Этот метод базируется на изготовлении печатной продукции с помощью цифровых печатных машин.

Использование автоматизированных комплексов позволяет:

1. Перейти к безбумажным технологиям при резком увеличении качества обработки текста и изобразительной информации.

2. Реализовать конвейерную обработку текста и изобразительной информации, исключая межоперационные интервалы.

3. Создать необходимые терминологические словари, списки и другие вспомогательные материалы.

4. Использовать различные базы и базы данных при производстве текстовой и изобразительной информации.

При формировании полос издания существуют различные способы визуального представления информации, эта информация отображается на информационном поле воспроизведения. Под информационным полем подразумевают часть пространства, находящегося в поле зрения читателя (полоса в журнале, газете). Для оператора под информационным полем подразумевается экран монитора. При отображении информации используются различные носители для визуализации и фиксации различных знаков, а так же их цвета, яркости и начертания.

В едином технологическом процессе обработки издательской информации используются различные типы носителей:

1. бумага

2. фотопленки

3. экраны мониторов

Бумажные носители используются для получения оригинал-макета. На фотоматериалах изготавливают фотоформы, с которых затем получают печатные формы.

Структурирование текста и его целостность достигаются за счет заложенной в нём смысловой организации. Смысловая организация текста достигается за счёт выполнения следующих условий:

1. За счёт аппарата смысловой структуризации, когда любое сообщение, обрабатывается путём выделения отдельных слов и абзацев.

2. За счёт аппарата смысловой рубрикации, то есть за счет смысловых и цифровых заголовков.

3. З счёт аппарата смысловой акцентировки, то есть путём выделения главных и второстепенных частей текста.

Смысловая организация текстовой информации достигается за счёт использования различных знаков, символов, а так же расположения текста на полосе. Как правило, текстовый материал является основой печатной продукции.

Единство текстового материала в издании достигается за счёт выполнения или соблюдения принципов композиции, они реализуются посредством:

1. Повторения целого в частях

2. Подчиненности и упорядоченности элементов и групп

3. Соблюдение соразмерности, равновесия, единства

В печатном издании представляются системные ряды составляющих его элементов по смысловому, функциональному, конструктивному принципам. Отдельные знаки, формируясь в слова, предложения и фразы выступают как смысловые формы.

Развороты книги имеют оси симметрии. Симметрия требует закономерного расположения одинаковых частей относительно оси или плоскости. В основе симметричной или центрированной копии лежит прямой угол между горизонтальностью сток и зрительной вертикальной осью. Восприятие симметрии текстового материала обеспечивает большую скорость чтения. Отличительной особенностью ассиметричной копии является расположение текстового материала относительно нескольких вертикальных осей располагаемых произвольно. Пропорции выражают качественную взаимосвязь между отдельными частями текстового материала. Они базируются на числовых соотношениях и рядах геометрических построений. Пропорциональные закономерности лежат в основе системы размеров наборных литер, а так же размеров и месте текстовых блоков. Любой элемент текстовой информации обязательно соотносится с форматом полосы. Особо обращается внимание на размеры и пропорции буквенных знаков на полосе, на длину строк, высоту колонок и пропорции таблиц. Соразмерность один из важнейших принципов набора. Пропорциональность букв и знаков складываются из соотношений штрихов, засечек контрастности. Соразмерность влияет на величину отступов, а так же на размеры заголовочных шрифтов. Коммуникативная функция реализуется в текстовом материале за счёт использования цвета. Функции цвета реализуются за счёт выделения знаков, отдельных слов, частей цветом для придания им особого значения. Функции цвета применяются для разделения частей текста или их объединения.

Внедрение систем автоматизации допечатных процессов требует выполнения следующих принципов:

1. Повторяемость – определяет круг изданий, к которым применимы общие принципы.

2. Обязательность – устанавливает законодательную стандартизацию.

3. Системность – определяет стандарт как элемент системы и приводит к созданию совокупности связанных между собой конкретных объектов стандартизации.

Основные понятия информатики

В информатике к основным понятиям относятся – информация и сообщения. Сообщения могут передавать различную информацию.

Для человеческого общества характерна передача сообщений в языковой форме. Представленная на долговременных носителях информация называется письмом. Письмо может восприниматься зрительно, на слух или на ощупь. Язык можно определить, как некоторое конечное множество отличных друг от друга элементов (набор символов). Набор символов или знаков, для которых определен нормализованный порядок, называют алфавитом. При рассмотрении сообщения некоторого естественного языка его можно представить в 3-х видах как некоторую последовательность знаков, а именно:

1. Последовательность знаков.

2. Последовательность слов, состоящих из знаков.

3. Одно предложение, которое может быть воспринято как единая информация.

Таким образом, один символ или знак выступает как единая информация, для которой свойственны конкретные особенности воспроизведения, хранения и передачи на расстоянии.

Знаки можно разделить на символы и диактрики.

Символ – отражает значение представленного предмета или явления.

Диактрики – или не имеют прямой связи между формой и значением, или такая связь у них утеряна в результате изменения формы знака, например, буквы русского алфавита или арабские цифры: они не связаны непосредственно с обозначением или количеством.

Изучение знаков и знаковых систем называют семиотикой, в этой науке несколько направлений:

1. Синтактика

2. Семантика

3. Прагматика

Синтактика – изучает структуру т правила соединения отдельных знаков.

Семантика – применительно к тексту, рассматривает его структуру, систему семантических связей между единицами текста.

Прагматика – выявляет вопросы о ложности или истинности того или иного высказывания, а так же изучает законы их функционирования, как средств коммуникации между субъектами.

В естественном языке выделяют несколько уровней языковых единиц:

1. текст

2. предложение словосочетание

3. слово 4. слог

5. фонема

Знания о естественном языке классифицируются на словарь и грамматику.

Словарь – как совокупность знаний об индивидуальных языковых единицах.

Грамматика – совокупность знаний, которые являются общими для языковых единиц одного или нескольких уровней и представлены виде системы правил, применение которых позволяет генерировать и понимать осмысленные высказывания.

Конструктивные свойства языка – это целостность и связанность текста. Целостность предполагает его смысловое единство и обеспечивается логически-смысловыми (семантическими) и структурными или синтаксическими средствами.

Комплекс предложений связанных семантически и грамматически правилами представляет собой блок текстовой информации. Семантическая связанность текста выражается по средствам формальных параметров, которые существуют в окружающей действительности. Формальное выражение синтаксических связей определено в следующих видах грамматической зависимости, то есть подчинительные связи:

1. согласование

2. управление

3. примыкание

Звучащая речь предполагает наличие фонетического слова, т.е. части фразы, объединенной одним ударением. Часть фонетического слова, характеризуется усилением звучности, определяется как слог. Наименьшая функциональная единица языка – это фонема. В русском языке выделяют до 45 различных фонем. Каждое слово языка можно разложить на ряд фонем определяющих целостную структуру слова. Фонемы реализуются в звуках речи и различных по совокупности дифференцирующих признаков. Дифференцирующие признаки – это множество параметров отражающих способ и место образования звуков, а так же физических характеристик полученных физическими приборами, на основании которых определяются фонемы.

Языковая единица – предложение – совокупность связанных словосочетаний или слов, законченных по смыслу. Слова, объеденные в предложения по определенной схеме, представляют абзац, по которому может быть построено минимальное самостоятельное речевое сообщение.

Естественные языки выполняют ряд функций:

1. Коммуникативную

2. Эстетическую

Другие знаковые системы выполняют только часть функций свойственных естественным языкам, их отличие заключается в сужении области применения и действия формализованных областей. В искусственных знаковых системах существует однозначная связь между лексической единицей языка и смыслом, который она представляет. Формирование информации осуществляется определенным способом в виде системы отдельных составляющих.

Современные системы обработки информации в издательско-полиграфических комплексах решают проблемы обработки компонент информации, которая может быть представлена в виде ряда составляющих:

N = {t, s, g, c}

N – семантическая информация,

t – текстовая форма,

s – аудиальная форма,

g – табличная форма,

c – изобразительная форма.

“t” передается в книгах, газетах и журналах содержание передаваемого материала.

“c” представлена виде чертежей, схем, графиков, диаграмм и рисунков.

“g” таблицы, базы данных.

Содержание печатных изданий можно представить не только по формам семантической информации, но и по видам:

1. Первичная – семантическая информация, отражающая по средствам знаков содержание книг, журналов и т.д. Эта информация имеет законченный характер.

2. Вторичная – отражает при помощи знаков для заданной формы результаты аналитико-синтетического и логического преобразования первичной семантической информации. Вторичная информация может быть представлена в виде аннотации, реферата.

Человеко-машинные комплексы

Под автоматизированными системами понимается подмножество взаимосвязанных элементов. Структура автоматизированных систем обработки информации понимается как организация элементов с определенными свойствами путём установления между ними взаимосвязей.

Например:

НИС предполагает наличие ПК, а также устройств ввода информации и устройств для вывода сверстанных полос. Структура ПК и свойства элементов определяют характеристики НИС и рассматривают её как целостное образование.

Системой называется совокупность элементов объединенных какими-либо связями для достижения конечных целей.

Разнообразие элементов и систем дает возможность для классификации систем по физической природе элементов, по назначению. Так в структуре ЭВМ выделяют:

- процессор

- память

Таким образом, схематично ядро ЭВМ можно представить так:

Процессор предназначен для выполнения всех функций связанных с обработкой информации и с управлением ходом процесса обработки информации.

Схематично структуру процессора можно изобразить так

Обозначения на рисунке:

УУ – устройство управления

АЛУ – арифметическое, логическое устройство

Память ЭВМ предназначена для хранения системных программных средств, базовых программных средств, прикладного программного обеспечения.

Схематично структуру и основные этапы развития памяти можно представить так:

Обозначения:

ПЗУ – постоянное запоминающееся устройство

ОЗУ – оперативное запоминающее устройство

ВЗУ – внешние запоминающие устройства

НМГ – магнитные барабаны

НМЛ – магнитная лента

НМД – на магнитном диске

НГМД – гибкие магнитные диски

Память ЭВМ предназначена для хранения системных программных средств, базовых программных средств, прикладного программного обеспечения.

Системное программное обеспечение – различные операционные системы, предназначенные для организации интерфейса между ЭВМ и программистом или пользователем ЭВМ.

Базовое программное обеспечение – наличие таких программ, которые хранятся в постоянном запоминающем устройстве (программы диагностики, тестирующие устройства).

Прикладное программное обеспечение – это такой комплекс программных продуктов, который предназначен для выполнения проблемно-ориентированных задач пользователей ЭВМ (текстовые процессоры, верстка).

Для автоматизации обработки информации на ЭВМ используются различные устройства памяти, в которых хранятся различные программы, предназначенные для выполнения конкретных функций в составе вычислительной системы.

ПЗУ предназначено для хранения табличной информации, базового программного обеспечения, базовой системы ввода-вывода информации BIOS.

Для хранения информации необходимой во время текущего сеанса ЭВМ служит основная или оперативная память компьютера (ОЗУ).

В оперативной памяти находятся:

• Средства оперативной системы

• Базовое программное обеспечение

• Те прикладные программы по средствам, которых пользователь осуществляет обработку информации.

Для длительного хранения информации используются внешние запоминающие устройства:

• Накопители информации на магнитной ленте (стримеры)

• Накопители на гибких магнитных дисках

• Накопители на магнитных дисках (типа винчестер)

• Накопитель на оптических дисках(CD-ROM, DVD-ROM)

Из устройств для длительного хранения информации накопители типа винчестер наибольшую емкость.

В настоящее время для объединения различных технических устройств осуществляющих подготовку и выпуск печатной продукции осуществляется объединение устройств в АРМы (автоматизированные рабочие места).

Комплекс технических средств издательского и полиграфического комплекса.

Основой современных полиграфических и издательских комплексов является ПК, которые могут объединяться в многопроцессорные системы, в локальные вычислительные сети, глобальные вычислительные сети.

В составе вычислительной системы построенной на базе ПК могут присутствовать несколько устройств составляющих стандартную конфигурацию ПК.

Основу ПК составляет системный блок, в составе которого присутствуют: блок питания, материнская плата, а также несколько внешних запоминающих устройств: накопитель на твердом диске, накопитель на гибком диске (флоппи), устройство для хранения-чтения на оптических дисках.

Системные платы

Материнская плата представляет панель, на которой установлены различные типы разъемов, которые соединяются системными шинами. Размеры системных плат являются стандартизированными, они выпускаются в нескольких вариантах, что обуславливает размером и типом корпусов, в которые эти плати можно установить.

Системная, или материнская, плата персонального компьютера (System board или Motherboard) является основной системного блока, определяющей архитектуру и производительность компьютера. На ней устанавливаются следующие обязательные компоненты.

• Процессор(ы) и сопроцессор

• Память: постоянная, оперативная, кэш-память

• Обязательные системные средства ввода вывода: контроллеры клавиатуры, прерываний, DMA, таймеры, CMOS RTC, средства управления динамиком

• Интерфейсные схемы и разъемы шин расширения

• Кварцевый генератор синхронизации

• Схема формирования сброса системы по сигналу Power Good от блока питания или кнопки Reset

• Схема управления блоком питания (для плат и блоков ATX)

• Регуляторы напряжения питания – VRM (Voltage Regulation Module). Как правило, это управляемые преобразователи напряжения +5В в более низкое, требуемое для современных низковольтных процессоров и интерфейсов.

• Средства мониторинга состояния системного блока: измерители скорости вращения вентиляторов и температуры процессора и других высокотемпературных компонентов; измерители питающих напряжений; сигнализаторы несанкционированного доступа и т.п. Эти средства позволяют программно (через загружаемое ПО или меню CMOS Setup) снимать показания измерителей и датчиков, а также при должной настройке вырабатывать прерывание, сигнализирующее о критических событиях, и даже предпринимать экстренные меры (вплоть до выключения питания при перегреве). Средства мониторинга присутствуют не на всех системных платах.

Кроме этих сугубо обязательных средств, на большинстве современных системных плат устанавливают и контроллеры НГМД, интерфейсы COM- и LPT- портов, 2-6 портов USB, пару каналов ATA. Этот набор по нынешним меркам является обязательным для «голых» системных плат, иногда к нему добавляют и контроллеры SCSI, FireWire. Существуют и системные платы с интегрированными видео- и аудиоустройствами, адаптером локальной сети и прочими, обеспечивающие полную функциональность компьютера без всяких карт расширения. Размещение на системной плате контроллеров, требующих интенсивного обмена данными (ATA, SCSI, графический адаптер), позволяет использовать преимущества локального подключения к шине памяти и процессора. Какая плата лучше – «голая» или с интегрированной периферией, - зависит от назначения компьютера.

Системные платы первых PC кроме процессора содержали несколько периферийных БИС (контроллеры прерываний, прямого доступа к памяти, контроллер шины) и связующую логику на микросхемах малой и средней степени интеграции. Современные платы исполняются на основе чипсетов (Chipset) – наборов из нескольких БИС, реализующих все необходимые функции связи основных компонентов – процессора, памяти и шин. Чипсет определяет возможности применения различных типов процессоров, основной и кэш-памяти и ряд других характеристик системы, определяющих её возможности и перспективы модернизации. Его тип существенно влияет и на производительность - при одинаковых установленных компонентах производительность компьютеров, собранных на разных системных платах может отличаться на 30%.

Основные виды системных плат:

• Объединительная

• Полноразмерная плата AT

• Плата Baby AT

• ATX

• LPX • NLX

Системы с объединительными платами бывают 2-х типов: пассивные и активные. Пассивные объединительные платы не содержат никакой электроники, а имеют только разъемы шин, несколько различных буферов и драйверных схем, остальные элементы размещаются на платах расширения. Активные объединительные платы содержат схемы управления шиной и многие другие компоненты; на таких платах содержится вся необходимая электроника за исключением процессорного комплекса. Процессорным комплексом называют часть схемы объеденной платы, которая включает сам процессор и непосредственно связанные с ним компоненты, такие как тактовый генератор, кэш-память и т.д.

Большинство ПК используют активную плату с отдельным процессорным комплексом. Компания IBM использует такую конструкцию в самых мощных компьютерах серверного класса.

Полноразмерная плата AT:

12”*13” (30,5*33 см)

Такая плата помещается в полноразмерный системный блок AT или Tower

Baby AT Может быть установлена в полноразмерном комплексе AT, причём для подключения клавиатуры на таких платах используется 5-тиконтактный разъем DIN.Эти плати можно установить практически в любой комплекс

Плата LPX

Для корпусов с уменьшенной высотой

Плата NLX

Эти платы наиболее перспективны, так как на них можно установить новые микропроцессоры с повышенным тепловыделением. Этот тип имеет ряд преимуществ: поддержка современных технологий – это особенно важно для пентиумов последних поколений, так как эти микропроцессоры требуют наличие специальной системы охлаждения; слоты расширения находятся непосредственно на системной плате, что обеспечивает возможность подключения современных видео карт для высоко эффективных видео мониторов.

Для материнских плат важной характеристикой является форм-фактор – этот параметр определяет поколение микропроцессоров, которые можно устанавливать на материнскую плату.

Для разъема SuperSoket7 могут использовать процессоры фирм IBM типа K6, К6-2. В разъем Slot1 процессоры фирмы Intel, такие как Pentium 2,3,4. На сегодняшний день Slot1 используют все процессоры высшего уровня.

Процессор

Процессор – это главная микросхема материнской платы; устройство ЭВМ, которое предназначено для управления ходом вычислительных процессов, логические операции. В ПК присутствует центральный процессор, который выполняет все основные операции, связанные с обработкой информации, кроме того ПК может быть оснащен сопроцессором, ориентированным на эффективное выполнение специфических функций, таких как:

• Математический сопроцессор для обработки информационных данных в формате с плавающей точкой

• Графический сопроцессор для графических изображений

• Процессор ввода-вывода для выполнения операций взаимодействия с периферийными устройствами.

Процессор имеет ряд устройств, среди которых выделяют: УУ – устройство управления, АЛУ – арифметически-логическое устройство.

Основные параметры процессора:

• Разрядность

• Рабочее напряжение

• Тактовая частота

• Коэффициент внутреннего умножения тактовой частоты

• Размер кэш-памяти

Тактовая частота определяет количество элементарных операций выполняемых процессором за единицу времени. Тактовая частота измеряется в Герцах(1 операция/с). Чем выше таковая частота, тем больше команд может выполнить процессор, тем выше производительность. У современных процессоров 2 ГГц.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в регистрах за один такт. Разрядность процессора определяется разрядностью командной шины, по которой передаются команды для выполнения. У Intel – 32, 64 разряда.

Рабочее напряжение процессора обеспечивается материнской платой и блоком питания расположенным в системном блоке (3 вольта). Снижение рабочего напряжения позволяет уменьшить размер.

Коэффициент внутреннего умножения тактовой частоты – это коэффициент, на который необходимо умножить тактовую частоту материнской платы для достижения необходимой частоты рабочего процесса. Процессор получает сигналы от материнской платы, которая работает на частотах более низких, чем процессор. Тактовая частота материнской платы – 100, 133 МГц, коэффициент - 4, 5.

Начиная с процессоров 486, процедура модернизации посредством замены процессора на более мощный, стала традиционной. Системные платы стали выпускать с расчетом на различные модификации и тактовые частоты процессоров. Процессоры стали устанавливать в стандартизованные ZIF-сокеты, а затем и в слоты – щелевые двухрядные разъемы.

Кэш – память. Обмен данными внутри процессора производится значительно быстрее, чем обмен данными между процессором и оперативной памятью. Для того, чтоб уменьшить количество обрамлений к оперативной памяти внутри процессора создают сверхоперативное запоминающее устройство (СОЗУ) или кэш-память. Когда процессору нужны данные для обработки информации, он сначала обращается к кэш-памяти, а только при отсутствии там данных обращается к оперативной памяти. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Кэш-память бывает 3-х уровней:

• 1-го уровня – выполняется на одном кристалле с процессором и имеет объем несколько десятков килобайт

• 2-го уровня – выполняется на отдельном кристалле, но располагается в границах процессора с объемом 100 и более килобайт

• 3-го уровня – выполняется на отдельных быстродействующих микросхемах расположенных на материнской плате и имеет один и более мегабайт.

Статическая кэш-память на системной плате стала широко применяться с процессорами 386, 486 и Pentium, производительность которых сильно оторвалась от быстродействия динамической памяти. Кэш на системной плате Pentium является вторичным, поскольку первый уровень кэширования реализуется внутри процессора. Для процессоров P6, Pentium 4 и AMD K7 вторичный кэш с системной платы перекочевала на микросхему (картридж) процессора.

В качестве кэш-памяти применяются следующие типы статической памяти:

• Anync SRAM, она же A-SRAM или просто SRAM, - традиционная асинхронная память

• Sync Burst SRAM, или SB SRAM, - пакетная синхронная память

• PB SRAM – пакетно-конвейерная синхронная память.

Типы архитектур процессоров

В процессе работы процессор обрабатывает данные, которые находятся в его регистрах, в оперативной памяти и внешних буферных устройствах процессора. Всего существует 3 информационных потока, обрабатываемых процессором:

1. Команды

2. Адреса 3. Данные подлежащие обработки

Совокупность разнообразных команд, которые может выполнить процессор над данными, образует систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах, тем дольше средняя продолжительность выполнения команд процессора. Процессоры Intel насчитывают более 1000 команд и относятся к процессорам с расширенной системой команд (CISC).

Архитектурный облик IBM PC-совместимого компьютера определяется рядом свойств, обеспечивающих возможность функционирования программного обеспечения, управляющего подключенным оборудованием. Программы могут взаимодействовать с устройствами разными способами:

• Используя вызовы функций операционной системы(прерывания DOS, API Windows и т.д.);

• Используя вызовы функций базовой системы ввода-вывода (BIOS);

• Непосредственно взаимодействуя с известным им «железом» - портами и памятью устройств или контроллеров интерфейсов.

Такое разнообразие существует благодаря изначальной открытости архитектуры первых IBM PC и сохранения имеющихся решений (пускай иногда и не самых лучших) в последующих моделях, обрастающих новыми узлами.

Облик PC-совместимого компьютера в значительной степени определяется разработчиками из фирм Microsoft и Intel. Для этих фирм стало уже традицией выпускать объемистый документ, диктующий разработчикам аппаратуры требования для получения желаемого логотипа “Designed for Microsoft Windows”.

В спецификациях определяются требования к функциональности и производительности всех подсистем компьютера, включая и периферийные устройства.

В настоящее время выделяют следующие типы архитектур процессора:

• RISC – возможность выполнения меньшего количества команд, но с большой скоростью Команды состоящие из более простых команд, выполняются более производительно и с большой скоростью. Недостатки: сложные алгоритмы не всегда можно разбить на последовательность простых команд.

• CISC – процессоры универсальны и могут использоваться в любых компьютерных системах.

• MISC – промежуточный тип архитектуры. Имеет внутреннее ядро микропроцессора, выполненное по RISC-архитектуре и внешнее выполненное по структуре CISC.

Шины.

Слоты расширения предназначены для установки карт различного назначения, расширяющих функциональные возможности компьютера. На слоты выводятся стандартные шины расширения ввода-вывода, а также промежуточные интерфейсы, наподобие AMR и CNR. Стандартизованные шины расширения ввода-вывода обеспечивают основу функциональной расширяемости PC-совместимого персонального компьютера, который с самого рождения не замыкался на выполнении сугубо вычислительных задач.

Шины расширения является средствами подключения системного уровня: они позволяют адаптерам и контроллерам непосредственно использовать системные ресурсы PC – пространства памяти и ввода-вывода, прерывания, каналы прямого доступа к памяти. Как следствие, изготовителям модулей расширения приходится точно следовать протоколам шины, включая жесткие частотные и нагрузочные параметры, а также временные диаграммы. Отклонения приводят к несовместимости с некоторыми системными платами. Если при подключении к внешним интерфейсам это ведет к неработоспособности только самого устройства, то некорректное подключение к системной шине может блокировать работу всего компьютера. Следует также учитывать ограниченность ресурсов PC. Самые дефицитные из них – линии запросов прерываний, проблема прерываний, известная по шине ISA, так и не была радикально решена с переходом на PCI. Другой дефицит – каналы прямого доступа шины ISA, используемые и для прямого управления шиной, - в шине PCI исчез. Доступное адресное пространство памяти и портов ввода-вывода, в котором было тесновато абонентам шины ISA, в PCI существенно расширено. Проблемы распределения ресурсов на шинах решаются по-разному, но чаще всего применяется технология PnP.

В современных настольных компьютерах основной шиной расширения является PCI, порт AGP присутствует практически повсеместно, шина ISA, несмотря на рекомендации отойти от нее, сохраняется как средство подключения старых карт расширений.

Выделяют 3 вида шин:

1. Шина данных

2. Адресная шина

3. Шина команд

Шина данных – происходит копирование данных из оперативной памяти, в регистре процессора и наоборот. 64 разрядная.

Адресная шина – данные, которые передаются, трактуются как адреса ячеек оперативной памяти. С помощью этой шины процессор считывает адреса команд, которые надо выполнить, а также данные, которыми оперируют команды. 32-разрядная.

Шина команд (управления)– поставляет команды, которые выполняет процессором. Простые команды укладываются в один байт, более сложные в 2,3 байта. 32-разрядная.

Шины на материнской плате используют не только для связи с процессором, все остальные устройства ЭВМ тоже подключаются с помощью шин.

• ISA – позволяет связать между собой все устройства в системном блоке, а так же обеспечить подключение новых устройств через стандартные слоты. Пропускная способность составляет 5,5 Мб в секунду. Сейчас используют только для подключения внешних устройств, которые не требуют большой пропускной способности (звук, модемы).

• EISA- 32-битная шина средней производительности, применяемая в основном для подключения контроллеров дисков и адаптеров локальных сетей в серверах. В настоящее время вытеснена шиной PCI. Раньше применялась в серверных платформах, где необходимо устанавливать множество дополнительных плат расширения. В слот EISA можно устанавливать карты ISA(но не наоборот). Пропускная способность до 32-Мб-в секунду.

• VLB – локальная шина, которая представляет собой соединение процессора с оперативной памятью в обход основной магистральной шины. Эта шина работает на более высокой частоте и позволяет увеличить скорость передачи данных. Эта шина имеет интерфейс для подключения видео адаптера необходимого для подключения монитора в состав вычислительного комплекса. Пропускная способность до 130 Мб в секунду. Рабочая тактовая частота – 50 МГц. Зависит от типа устройств подключаемых к этой шине.

• PCI – стандарт подключения внешних устройств который введен для Pentium. По своей сути это интерфейс - локальные шины с разъемами для подключения внешних компонентов вычислительных систем. Тактовая частота - до 166 МГц и обеспечивает передачу информации со скоростью 264 Мб в секунду независимо от количества подключенных устройств. С введением этого стандарта появилась возможность для подключения технологии “Plug & Play”: после физического подключения устройства обеспечивается автоматическая конфигурация в составе вычислительной системы.

• FSB – шина, которая используется для связи процессора с оперативной памятью компьютера, эта шина работает на частоте 133-МГц и выше. Пропускная способность до 800 Мб/сек. Частота работы шины FSB является основным параметром, который указывается в спецификации материнской платы.

• AGP – специальный шинный интерфейс, который предназначен для подключения видео адаптера. Этот интерфейс необходим в современных вычислительных устройствах, потому что параметры шины PCI не отвечают требованиям видеоадаптера по быстродействию. Пропускная способность 1066 Мб/сек. В отличие от шины PCI для порта AGP возникают проблемы совместимости карт акселераторов с типом системной платы (чипсета) и процессора даже при формальном соответствии их параметров.

• USB – стандарт универсальной последовательной шины, который определяет способ взаимодействия компьютера с современным периферийном оборудованием. Этот порт разрешает подключать 256 различных устройств с последовательным интерфейсом, причем устройства могут подключаться последовательно (цепочкой). Преимущество этого стандарта в том, что периферийное устройство можно подключать. Во время текущего сеанса работы без перезагрузки. Этот порт позволяет соединять компьютеры в сеть без использования специальной аппаратуры и программного обеспечения.

Конфигурирование шин расширения предполагает в основном настройку их временных параметров:

• Для шины PCI задается частота синхронизации, кроме того, с CMOS Setup для этой шины могут определяться некоторые её возможные режимы – конкурентные обращения, слежение за палитрами.

• Для порта AGP задается частота, поддерживаемые режимы, а также апертуры AGP.

• Для шин ISA и PCI иногда настройками CMOS Setup приходится распределять системные ресурсы ( главным образом, линии запросов прерываний).

• Для шины ISA кроме частоты (которая должна быть порядка 8 МГц) задают время восстановления для 8- и 16-битных обращений к памяти и вводу-выводу. Неустойчивая работа адаптеров может потребовать замедления шины ISA, но в настоящее время понижение её производительности не сильно отражается на производительности компьютера в целом.

Виды интерфейсов устройств хранения данных.

Различные устройства для хранения данных отличаются по своему интерфейсу, то есть по типу контролера, к которому они должны подключаться.

Типы: • IDE (EIDE) – наиболее распространенный вид интерфейсов, который предназначен для подключения жестких дисков.

К IDE – 2 типа устройства можно подключить

К EIDE – 4 типа устройств можно подключить

• SCSI – контролеры применяемые на компьютерах исключительно как серверы локальных сетей, так же на компьютерах в издательских системах, а так же в составе АРМов (автоматизированных рабочих мест). Обеспечивает высокое быстродействие, широкий диапазон подключаемых устройств.

Из всех современных устройств хранения данных наибольшую скорость обмена информации с процессором имеют накопители на твердых дисках. IDE и SCSI используются для подключения магнитно-оптических дисков, сканеров. SCSI имеет преимущество: позволяет подключать различные типы устройств как внутренних так и внешних (жесткие диски, стримеры, дисководы для компакт-дисков, принтеры). Операции обмена информацией с этим типом контролеров можно осуществлять параллельно. В серверах локальных сетей работающих с десятками жестких дисков скорость контролеров SCSI может достигать до 20 Мб/сек за счет подключения устройств к этому контролеру с помощью 68 проводного кабеля.

В составе одного компьютера может быть использовано до 4-х типов контролеров.

Накопители на жестком диске отличаются следующими характеристиками:

1. Емкостью, т.е. тем количеством информации, которая может разместиться непосредственно на жестком диске.

2. Быстродействие, т.е. это время доступа к информации, а так же скорость чтения, записи.

3. Интерфейс, т.е. тип контролера к которому может подключаться жесткий диск(IDE, EIDE, SCSI).

Спецификация Plug and Play для шины ISA

Решением задачи изоляции карт ISA, программного распределения системных ресурсов, конфигурирования и передачи параметров операционной системе и прикладному ПО явилась спецификация компаний Intel и Microsoft “Plug and play ISA Specification”, её версия 1.0а была опубликована в мае 1994 года. Вышеперечисленные задачи решаются для карт PnP, которые могут работать и в окружении традиционных карт, называемых Legacy Cards. Поскольку описание программной части этой спецификации достаточно объемно и выходит за рамки данной книги, рассмотрим принципы реализации PnP в основном с точки зрения аппаратных средств.

Конфигурирование в системе PnP состоит из следующих шагов.

1. Производится изоляция одной карты от всех остальных.

2. Карте назначается номер CSN (Card Select Number), фигурально выражаясь - «приделывается ручка» (Assign a handle), за которую её можно «ухватить» дальнейшим командам PnP.

3. С карты считываются данные о сконфигурированных и поддерживаемых ресурсах. Эти шаги повторяются для всех карт, после чего выполняются завершающие шаги.

4. Производится распределение (арбитраж) системных ресурсов, выделяемых каждой карте.

5. Каждая карта конфигурируется согласно выбранному распределению ресурсов и активируется(переводится в рабочий режим).

Все шаги конфигурирования выполняет процедура POST(если BIOS имеет поддержку PnP) или операционная система при загрузке. PnP Bios может ограничиться конфигурированием и активацией только устройств, участвующих в загрузке, оставляя конфигурирование и активацию дополнительных устройств ОС. BIOS без поддержки PnP может использовать необходимые для загрузки устройства, сконфигурированные с параметрами умолчания, а изоляцией карт, сбором информации и конфигурированием займется операционная система при загрузке. Вариантов много, но все они опираются на единые методы взаимодействия с картами ISA PnP.

Мониторы

Монитор (или дисплей) предназначен для вывода на экран текстовой и графической информации. Формирование изображения на экране монитора может выполняться различными способами.

Мониторы бывают цветными и монохромными.

В цветных мониторах изображение формируется светящимися точками зеленого, красного и синего цветов.

В монохромных мониторах изображение формируется точками белого, зеленого или коричневого цветов. Такие мониторы используются в специальных компьютерах (например, кассовых аппаратах).

Мониторы имеют различные размеры. Наиболее распространенные - от 15 до 21 дюйма (по длине диагонали). В издательских системах, как правило, используются мониторы до 21дюйма.

Цветные мониторы характеризуются зерном, т.е. расстоянием между точками светящегося вещества одного цвета. Размер зерна определяет качество монитора, а также четкость изображения. На качественн6ых мониторах размер зерна не должен превышать 0,25мм, на мониторах среднего качества – 0,28мм, на мониторах низкой ценовой планки – 0,31мм.

Видеорежим монитора характеризуется разрешением, частотами вертикальной и горизонтальной развертки (частотой кадров и строк).

Разрешение монитора зависит от качества видеосигнала, передаваемого от видеоконтроллера в монитор. Этот сигнал описывает изображение как прямоугольную сетку цветных точек. Количество точек по горизонтали и вертикали в передаваемом изображении называется разрешением. Если, например, разрешение 640х480, то это означает, что изображение на экране состоит из 640 точек по горизонтали и из 480 точек по вертикали, т.е. всего 640х480=307 200 точек.

Чем выше разрешение, тем более качественным будет изображение на экране.

Монитор отображает принимаемый видеосигнал построчно, выводя последовательно один ряд точек за другим. Для перехода от одной строки к другой видеоконтроллер посылает монитору специальные управляющие сигналы. Частота управляющих сигналов, указывающих на необходимость перейти к следующему ряду точек, называется частотой горизонтальной развертки (частотой строк).

Частота управляющих сигналов, указывающих на необходимость перейти к изображению верхнего ряда точек, называется частотой вертикальной развертки (частотой кадров).

Если величина частоты горизонтальной развертки существенна для согласования видеоконтроллера и монитора, то частота кадров важна для восприятия информации человеком, поскольку указывает, как часто изображение меняется на экране.

Если частота кадров незначительна, то изображение будет восприниматься как мерцающее. Лишь при частоте кадров выше 70 Гц мерцание пропадает.

В настоящее время, как правило, используются мониторы со следующим разрешением: 800х600

1024х768

1280х1024 1600х1200.

Качественные мониторы имеют почти плоский экран, антибликовое, антиотражающее и антистатическое покрытие, соответствуют нормам экономии электроэнергии (energy star), имеют регуляторы размера и положения изображения, способы коррекции подушкообразных и трапециевидных изображений, настройки цветовой температуры, наклона и поворота изображения.

Одним из требований к качественным мониторам является требование абсолютно правильного отображения цветов. Такие мониторы оснащаются возможностью калибровки, т.е. настройки цветовоспроизведения. Для калибровки цветовоспро-изведения мониторов соответствующее программное обеспечение в комплекте со специальным средством – калибратором, которое измеряет цвета, воспроизводимые монитором.

Электронные схемы компьютера, обеспечивающие формирование видеосигнала, т.е. определяющие изображение на мониторе, называется видеоконтроллером. Современные видеоконтроллеры обеспечивают представление информации на экране мониторов в двух режимах, а именно в текстовом и графическом.

В графическом режиме программа, которая обеспечивает работу монитора, выводят изображение в виде прямоугольной сетки точек. Цвет каждой из точек может задаваться отдельно. При выводе текстов на экране монитора можно использовать разные шрифты, размеры символов, цвета и расположения символов.

Современные операционные системы поддерживают работу графического режима монитора (Windows, Linux, OS2…). Работа монитора в графическом режиме связана с обработкой больших объемов информации. Чтобы обработка информации осуществилась с приемлемой скоростью, необходимо иметь мощный микропроцессор, а также высокопроизводительный видеоконтроллер.

В текстовом режиме работы экран монитора разбивается на отдельные места (25 строк по 80 символов, которые называются знакоместами). В каждое знакоместо может быть выведен один из 256 заранее определенных символов. Для каждого знакоместа на экране монитора работающая с экраном программа сообщает видеоконтроллеру всего 2 байта информации (1 байт для кода символа, 1 байт для отображения информации о цвете символа или фона). По этим данным видеоконтроллер формирует изображение на экране монитора. Для формирования изображения каждого символа, видеоконтроллер использует матрицу точек фиксированного размера (например, 8х16 точек). В этой матрице отмечено, какие точки соответствуют символу, а какие – фону. Совокупность матриц для каждого из 256 возможных символов составляет шрифт.

Существуют таблицы, которые описывают соответствующие между кодами символов и их изображением (таблицы кодировки символов).

Монитор может отображать любые цвета. Вместе с тем, общее количество цветов, воспроизводимых на экране монитора, ограничено (из-за ограниченности памяти видеоконтроллера). Как правило, существуют режимы, которые позволяют воспроизводить 16, 256, 16 800 000 цветов…

Для офисных приложений, как правило, достаточно 256 цветов. Однако, при воспроизведении многоцветных рисунков гораздо привлекательнее режимы с высокой степенью разрешения, когда может использоваться 16,8 млн. цветов. Чем больше цветов одновременно воспроизводиться на экране монитора, тем больший объем видеопамяти должен иметь видеоконтроллер. Например, разрешение 1024х768 и 256 цветов требуют 768 Кб информации для видеоконтроллера в каждой точке. Видеопамять формируется блоками по 512Кб. Данный режим работы достижим лишь на видеоконтроллерах с объемом памяти менее 1 Мб.

Требуемый объем памяти видеоконтроллера:

Разрешение количество цветов

256 65 536 16,8 млн.

640х480 512 Кб 1 Мб 1 Мб

800х600 512 Кб 1 Мб 1 Мб

1024х768 1 Мб 1,5 Мб 2,5 Мб

1280х1024 1,5 Мб 2,5 Мб 4 Мб

1600х1200 2 Мб 4 Мб 5,5 Мб

Технологии цветной печати

В настоящее время реализуется 6 технологий цветной печати:

1. Ударные игольчатые матричные принтеры (технология Dot Matrix);

2. Струйные принтеры с жидкими чернилами (Liquid ink-jet);

3. Принтеры с термопереносом восковой мастики (thermal transfer);

4. Принтеры с термосублимацией красителя (dye sublimation);

5. Струйные принтеры с изменением фазы красителя (phase change ink-jet);

6. Цветные лазерные принтеры (color laser).

1. Dot Matrix Принцип работы цветных ударных матричных принтеров заключается в том, что вертикальный ряд (или 2 ряда) непосредственно вбивает краситель с ленты в бумагу. В отличие от монохромных матричных принтеров в цветных аналогах используется многоцветная красочная лента. Система управления цветным матричным принтером контролирует не только конкретные иголки, но и цвет ленты.

Для этой технологии характерна невысокая скорость, шум, невысокое качество и относительно бедную палитру цветов. Со временем воспроизводимые цвета на таких принтерах становятся более тусклыми, так как красящая лента в процессе печати загрязняется. К достоинствам этой технологии относятся высокая надежность, низкая стоимость одной страницы изображения, возможность печати на обычной бумаге.

Такой тип печати применяется при выводе несложных цветных изображений.

2. Liquid ink-jet

Струйная технология печати сегодня является самой распространенной для реализации цветных изображений. Струйные чернильные принтеры делятся на 2 типа: устройства непрерывного действия (continuous drop) и устройства дискретного действия (drop-on-demand). Устройства дискретного действия в свою очередь делятся еще на две категории: устройства с нагреванием чернил («пузырьковая технология», или bubble-jet) и устройства на основе пьезоэффекта.

У устройств непрерывного действия струйка чернил, постоянно выпускаемая из сопла печатающей головки, направляется либо непосредственно на бумагу, либо в специальный приемник, откуда снова попадают в общий резервуар. В рабочую камеру чернила подаются микронасосом, а движение чернил зависит от пьезодатчика (такую технологию реализует, например, фирма Iris Graphics).

При реализации пузырьковой технологии в каждом сопле печатающей головки находится маленький нагревательный элемент (как правило, тонкопленочный резистор). При прохождении тока через резистор он нагревается до температуры около 500С и нагревает чернила. При этом образуется чернильный пузырек, который выталкивает через выходное отверстие сопла микрокаплю жидких чернил. При отключении тока резистор быстро остывает, пузырек быстро уменьшается в размерах таким образом засасывает через входное отверстие сопла новую порцию чернил. Такую технологию реализуют Canon, Hewlett-Packard (HP).

Второй метод основан на управлении соплом с помощью диафрагмы, которая соединена с пьезоэлетрическим датчиком. Обратный пьезоэлектрический эффект заключается в деформации пьезокристалла под действием электростатического поля. Изменение размеров пьезоэлемента, связанного с диафрагмой, приводит к выталкиванию капли и приливу через входное отверстие новой порции чернил. Такая технология реализуется в технике фирм Brazer, Epson, Techtronics. Фирма Epson использует многослойную пьезоэлектрическую головку, которая позволяет устранить «саттелиты» – маленькие капли, сопровождающие основную каплю. За счет этого повышается точность передачи изображений.

Сопла для печатающих головок струйных принтеров, через которые разбрызгиваются чернила, соответствуют ударным иглам матричных принтеров. Так как размер каждого сопла существенно меньше диаметра иглы, а количество сопел может быть больше количества игл, то изображение, получаемое с помощью струйной технологии теоретически должно быть более качественным, но на самом деле качество получаемых такой технологией изображений сильно зависит от качества бумаги, на которой они воспроизводятся. Использование бумаги невысокого качества может приводить к снижению яркости и изменению цветности изображения. Это объясняется, прежде всего, тем, что чернила могут растекаться по бумаге, а также просачиваться сквозь бумагу, если она недостаточно плотная.

К основным достоинствам струйной печати относятся возможность воспроизведения широкой палитры цветов с достаточно высоким качеством, к основным недостаткам – высокую стоимость расходных материалов, требование максимальной загруженности устройства с целью не допустить высыхание чернил.

3. Thermal transfer

Принцип работы принтеров с термопереносом заключается в том, что термопластичное красящее вещество, нанесенное на тонкую подложку, попадает на бумагу в тех местах, где нагревательными элементами печатающей головки обеспечивается должная температура (70-80С). При этом нагревательные элементы являются аналогами игл или сопел. При таком способе печати принтер работает почти бесшумно.

Но есть и недостатки. Например, для нанесения цветного изображения требуется 3-4 прохода, что увеличивает время печати. Кроме того, принтеры с такой технологией требуют специальной бумаги. В итоге стоимость одной страницы изображения, как правило, дороже, чем при печати на струйных принтерах. Еще один недостаток данного класса принтеров заключается в том, что для них характерна невысокая скорость печати: 1-2 страницы в минуту.

К преимуществам, помимо бесшумности, относятся высокая надежность данных принтеров, возможность воспроизводить цветное изображение как на бумаге, так и на пленке. При этом возможно воспроизводить 16,7 млн. цветов при разрешающей способности до 300 точек на дюйм.

4. Dye sublimation

Эта технология близка к технологии термопереноса, но в данном случае нагревательные элементы головки нагреваются до температуры 400С. При такой технологии печати под сублимацией понимают переход вещества из твердого в газообразное вещество (минуя жидкую стадию). Таким образом, порция красителя сублимирует с подложки и осаждается на бумаге или пленке. В принтерах с термосублимацией красителя есть возможность точного определения необходимого количества красителя, переносимого на бумагу. В результате точной комбинации цветов красителей можно подобрать практически любую палитру. Данная технология используется только для цветной печати. Реализующие эту технологию устройства относятся к классу high-end. Основные преимущества этого метода – фотографическое качество получаемого изображения, широкая гамма оттенков цветов. Но есть также существенный недостаток – высокая стоимость копий.

5. Phase change ink-jet

Эта технология реализуется в принтерах с твердым красителем. Принцип работы заключается в том, что для каждого первичного цвета красителя есть специальные восковые стержни, которые постепенно расплавляются нагревательным элементом при температуре около 90С, а затем красители попадают в отдельные резервуары. Находясь в расплавленном состоянии, красители подаются из резервуаров специальным насосом в печатающую головку, которая, как правило, работает на основе явления пьезоэффекта. Капли воскообразного красителя застывают почти мгновенно, благодаря чему такой тип принтеров может работать с любой бумагой. Качество цветов получается очень высоким. Красители в бумагу не просачиваются, – поэтому возможна двусторонняя печать. Однако скорость печати по такой технологии невысока: около 2 страниц в минуту.

Схема ксеро-копировального аппарата

Обозначения на рисунке:

1 – ракель;

2 – каротрон заряда;

3 – фоторецептор;

4 – магнитный вал с тонером;

5 – нагреваемый элемент;

6 – пружинный вал;

7 – бумага или пленка;

8 – источник света;

9 – вал переноса;

10 – фьюзер (печка).

Фоторецептор – это специальный материал (как правило, селен, нанесенный на металлическую основу). Обычно он выполняется в виде барабана, или вала. Фоторецептор заряжается каротроном заряда, который представляет собой металлическую (золотую или платиновую) проволоку или резиновый вал с металлической основой. В настоящее время в связи с тем, что проволочный каротрон сильно озонирует воздух, то стараются использовать в основном резиновый тип каротронов.

После зарядки на фоторецептор подается изображение, которое освещается источником света и проецируется на фоторецептор через систему зеркал. Для уменьшения и увеличения изображения часто используют оптические системы. Скорость барабана согласуется с системой передачи изображений. Те места на фоторецепторе, на которые попадает свет, либо меняют свой потенциал, либо вообще теряют электрический заряд. Таким образом, на фоторецепторе сохраняется рисунок оригинала в виде заряженных участков.

На следующем этапе фоторецептор входит в контакт с магнитным валом , который покрыт пылью, представляющей собой смесь тонера и носителя. Сам тонер – это порошок, состоящий из микрочастиц определенного цвета. При этом чем меньше размер частиц, тем качественнее осуществляется передача изображения. В свою очередь носитель представляет собой металлические (как правило, железные) частицы, на которых осаждается тонер. Таким образом, можно сказать, что на магнитном валу находятся микрочастицы, покрытые тонером. Тонер переходит на фоторецептор за счет сил электростатического притяжения между противоположными электрическими зарядами. Весь этот процесс называется проявкой.

Во время процесса проявки бумага подается на регистрацию, то есть она устанавливается в исходное состояние для печати. Как только бумага доходит до фоторецептора, происходит передача изображения с фоторецептора на бумагу.

Под бумагой находится вал переноса, который имеет электрический потенциал сильнее, чем электрический потенциал фоторецептора. Вал переноса изготавливается из металла, покрытого токопроводящей резиной. Вал переноса за счет высокого электрического потенциала оттягивает на себя весь тонер, который осаждается на бумаге. После завершения бумага отделяется от фоторецептора и подается на запекание.

Механизм запекания представляет собой процесс высокотемпературного нагрева бумаги с одновременным прижимом специальным валиком. Сама аппарат состоит из нагреваемого тефлонового вала с кварцевой лампой внутри и прижимного вала. Аппарат для запекания называется фьюзер («печка»).

В некоторых типах копировальных аппаратов вместо фьюзера устанавливается специальный термоэлемент, покрытый термопленкой. Такие копиры имеют меньший срок нагрева, но их недостаток – меньшее количество копий, так как термопленку легко можно повредить. Для предотвращения прилипания пленки бумаги к валу часто используют специальную силиконовую смазку. Копиры, в основе фьюзера которых – кварцевая лампа, используются в высокопроизводительных установках.

Фоторецептор очищается от остатков тонера с помощью ракельного ножа, который выполнен из специального материала (обычно это мягкий пластик), который находится в плотном контакте с барабаном. Остатки тонера отправляются в бункер отработки. В некоторых копирах эта функция возложена на специальную систему электростатического очищения тонера.

В мощных копировальных аппаратах фоторецептор, тонер, ракель и каротрон меняются отдельно после определенного количества копий. В небольших копирах эти части объединяются в один комплекс, который называют картриджем. В некоторых копирах картридж может быть разделен на два: копи-картридж (он включает в себя фоторецептор и ракель) и тонер-картридж (он состоит из тонера и магнитного вала). Все картриджи имеют определенный срок службы.

Лазерные принтеры

Лазерные принтеры действуют по тому же принципу, что и копиры. Отличие заключается в том, что в качестве источника света используется лазер, который меняет потенциал в определенных участках фоторецептора, куда затем переносится тонер.

Механизм работы лазерного принтера следующий:

луч лазера попадает на зеркало, которое вращается с высокой скоростью. Отраженный луч через систему призм попадает на барабан и за счет вращения зеркала выбивает заряды по всей длине барабана. При повороте барабана на 1 шаг, который определяет разрешение принтера по вертикали и измеряется в долях дюйма, вычерчивается новая линия. В некоторых принтерах кроме поворота барабана используется поворот зеркала по вертикали. Это позволяет на одном шаге поворота барабана вычертить два ряда точек. Лучи красного и синего цветов соответствуют различным положениям зеркала.

Лазерные принтеры помимо механической части имеют в своем составе электронную компоненту, которая обеспечивает работу памяти лазерного принтера.

На некоторых лазерных принтерах кроме оперативной памяти устанавливаются винчестеры, которые позволяют хранить специальные языки описания данных (например, язык Post Script). Эти языки предназначены для реализации при печати лазерными принтерами различных шрифтов. Наличие специальных языков описания данных позволяет использовать лазерные принтеры для работы с графикой.

В настоящее время самые качественные лазерные принтеры – принтеры производства фирмы HP (Hewlett-Packard), которая является одним из лидеров на рынке цифровой печати.

Методы лазерной печати основаны на построчном методе построения изображений. Каждая строка – это поворот барабана на 1/300 дюйма. При этом бумага перемещается на то же расстояние. Это перемещение – вертикальная ось листа. Лазерный луч подобно электронному лучу в кинескопе сканирует строку, обеспечивая передачу зарядов на фоторецептор, которые в свою очередь обеспечивают построение изображения на барабане.

Более совершенные методы печати позволяют изменять размер точек, которые переносятся на бумагу. Это достигается за счет модуляции лазерного луча в процессе построения изображения. Горизонтальное разрешение при лазерной печати можно увеличить за счет увеличения частоты управляющих сигналов для лазерного луча.

Лазерные принтеры условно разделяют на следующие группы:

- принтеры с невысокой производительностью (4-5 страниц в минуту), которые рассчитаны на небольшие объемы печати (до 10 000 страниц в месяц) и, как правило, используются для индивидуального применения;

- принтеры среднего класса (12 страниц в минуту), предназначенные для работы в локальных сетях и обеспечивающие средние объемы печати (до 20 000 страниц в месяц);

- принтеры с высокой производительностью (30 и более страниц в минуту и до 50 000 страниц в месяц).

Качество печати лазерных принтеров зависит от разрешающей способности принтера, которое определяется как количество точек, печатаемых на один дюйм.

300 т/дюйм обеспечивает производство деловых документов. Недостатки – плохое качество печати мелких букв и полутоновых изображений.

600 т/дюйм обеспечивает хорошее качество печати для деловых документов. Может применяться для издательских нужд при черно-белой полиграфии.

1200 т/дюйм обеспечивает высокое качество документов. Полутоновые изображения получаются удовлетворительно.

1800 т/дюйм обеспечивается подготовку высококачественных изданий.

Следует иметь в виду, что скорость печати лазерных принтеров зависит не только от самого принтера, но и от операционной системы, под управлением которой работает вся вычислительная система. Как правило, реальная скорость лазерного принтера в составе вычислительной системы на 20 % (или даже 40%) ниже, чем заявленная скорость печати принтера.

Лазерные принтеры могут печатать только на отдельных листах бумаги. Большинство лазерных принтеров поддерживает формат бумаги А4 или несколько больше.

Практически все лазерные принтеры обеспечивают печать на прозрачных пленках и на почтовых конвертах. К качеству бумаги принтеры не привередливы, за исключением низкосортной бумаги.

Для высокопроизводительных принтеров выпускаются специальные приспособления для двухсторонней печати. Особенностями лазерных принтеров является то, что получаемые от компьютера данные печатаются не сразу.

В оперативной памяти лазерных принтеров формируется изображение печатаемой страницы и только после этого, данные отправляются на печать. Оперативная память в лазерных принтерах используется также для хранения используемых для печати шрифтов. Требуемый объем оперативной памяти принтера зависит от разрешения и максимального формата бумаги. Например, для принтера для А4 с разрешением 300 т/дюйм оперативная память составляет 1 Мб, для разрешения 600 т/дюйм – не менее 2 Мб. Такого объема оперативной памяти достаточно для печати офисных, деловых документов. Если же использовать принтер для печати иллюстраций, то необходимо установить в принтер дополнительную оперативную память.

Большинство лазерных принтеров используют для управления печатью язык PCL (printer control language). Принтеры, использующие PCL, позволяют использовать используемые в операционной системе Windows масштабируемые шрифты в формате «True Type» и дают возможность переводить эти шрифты в растровую форму при посылке на печать.

Многие лазерные принтеры воспринимают язык описания страниц Post Script, разработанный фирмой Adobe. Это мощный язык, позволяющий описывать изображения в объектно-ориентированной форме. В издательских системах PS-принтеры являются стандартом, т.к. подготовленный для них документ может быть без изменений выведен на любой фотонаборной автомат, использующий для своих целей язык Post Script.

Драйверы PS-принтеров для операционной системы Windows позволяют осуществлять увеличение или уменьшение выводимого изображения, обеспечивают печать зеркального или негативного изображения, что необходимо для получения пленок при офсетном способе печати.

Принтеры, способные выводить графическую информацию в настоящее время представляют собой растровые устройства. Вообще современные устройства печати используют субтрактивную модель цветообразования. Первичными цветами для цветных принтеров являются зелено-голубой, светло-красный и желтый. Наложение двух из первичных цветов дает красный, зеленый или голубой цвета. Смешение трех цветов субтрактивной модели дает черный цвет. В некоторых принтерах для получения черного цвета используется отдельный черный краситель. Поэтому такая модель цветообразования называется CMY или CMYK: cyan – голубой, magenta – пурпурный, yellow – желтый, kontour – черный.

Реализация субтрактивной модели основана на том, что краситель, нанесенный на бумагу, действует как фильтр, который поглощает и отражает электромагнитные колебания различной частоты. Нужная насыщенность достигается за счет количества белого цвета: при выводе изображения на бумагу промежуточные цвета получаются путем пропуска нескольких точек основного цвета. Именно отношение количества цветных точек к количеству белых точек определяет уровень насыщенности цвета.

Сканеры

Сканер – это устройство, позволяющее вводить в компьютер образы изображений, представленные в виде текста, рисунков или другой графической информации.

Классификацию сканеров можно выполнить по прозрачности вводимого оригинала-изображения, по кинематическому устройству сканера, по типу вводимого изображения, по особенностям программного и аппаратного обеспечения сканеров.

Классификация сканеров по прозрачности оригинала

Эта классификация основывается на том, что оригиналы изображений, предназначенные для воспроизведения в цифровом виде можно разделить на две группы:

• непрозрачные оригиналы (страницы журналов, книг, фотографии, рисунки и т.д.)

• прозрачные оригиналы (пленки, слайды, негативы и т.д.)

Изображения непрозрачных оригиналов можно наблюдать в отраженном свете. А при сканировании прозрачных оригиналов воспринимается свет, прошедший через оригинал. Поэтому для обработки прозрачных оригиналов стандартные сканеры должны иметь специальные приставки, которые оценивают поглощенный свет.

Классификация по механизму движения сканеров

Определяющим фактором для полноты воспроизводства оригиналов является способ перемещения считывающей головки сканера и бумаги относительно друг друга. В настоящее время сканеры условно по этому критерию делят на две группы:

 ручные

 планшетные

Ручной сканер перемещается по поверхности оригинала пользователем. В планшетном сканере вдоль поверхности листа бумаги перемещается только сканирующая головка.

Так как при использовании ручных сканеров считывающая головка перемещается пользователем (у него могут, например, дрожать руки), то неравномерность перемещения считывающей головки сказывается на качестве вводимого в компьютер изображения. В ряде сканеров для подтверждения нормального ввода информации есть специальные индикаторы. Ширина вводимого изображения у ручных сканеров обычно не превышает 4 дюймов. В некоторых моделях для повышения разрешающей способности ширину вводимого изображения дополнительно уменьшают. Современные ручные сканеры могут обеспечивать автоматическую «склейку» вводимого изображения (из отдельно вводимых частей формируется целое изображение).

Планшетные, или страничные, сканеры позволяют вводить изображение размерами А4 или А3. существует несколько конструктивных типов таких устройств:

 планшетные

 рулонные

 проекционные

Основное отличие планшетных сканеров заключается в том, что сканирующая головка перемещается относительно бумаги вдоль вертикальной оси страницы (листа). Как правило, перемещение осуществляется с помощью шагового электродвигателя. Планшетные сканеры являются достаточно качественными устройствами. Внешне они могут напоминать копиры. Для сканирования оригинал помещается изображением на рабочий стол сканера – стеклянную пластину.

Работа рулонных сканеров напоминает работу современных факсимильных аппаратов. Отдельные листы документов протягиваются через устройство, при этом и осуществляется сканирование информации. Главный недостаток рулонных сканеров заключается в том, что они не позволяют считывать информацию с книг и журналов.

Проекционные сканеры еще называют проекционными аппаратами или фотоувеличителями. Оригинал, с которого считывается информация, кладется изображением вверх. Сканирующая головка при этом перемещается вдоль изображения. Основное преимущество таких сканеров – возможность сканирования трехмерных изображений.

Классификация по типу вводимого изображения

Сканеры подразделяются на черно-белые и цветные. Черно-белые сканеры, в свою очередь, делятся на штриховые и полутоновые (серые).

Штриховые сканеры могут работать только в двоичном режиме, воспринимая либо черный, либо белый цвета. Полутоновые сканеры используют максимальную разрешающую способность, работая в двоичном режиме. Обычно такие сканеры могут воспроизводить до 256 оттенков серого, которые ставятся в соответствие каждой точке изображения. Разрешающая способность таких сканеров оценивается по числу точек на дюйм изображения.

Благодаря операциям интерполяции, которые выполняются программно, современные сканеры могут иметь разрешение до 1600 точек на дюйм. В результате обработки с таким разрешением при сканировании изображения исчезают неровности диагональных линий, однако время, требуемое для сканирования, возрастает.

Один из наиболее популярных принципов работы цветных сканеров заключается в том, что сканируемое изображение освещается не белым светом, а тремя основными цветами радуги, полученными при пропускании белого света через вращающийся RGB-фильтр. Для каждого из основных цветов последовательность операций выполняется практически так же, как при сканировании черно-белого оригинала. После трех «проходов» сканирования получается файл, содержащий область изображения в трех основных цветах. Однако при этом время сканирования увеличивается в 3 раза.

Для управления работой сканера необходимы специальные программные драйверы, которые обеспечивают функционирование аппаратных устройств, выпущенных различными фирмами. С целью унификации программного обеспечения создан специальный стандарт – TWAIN. Это стандарт, согласно которому осуществляется обмен данными между прикладной программой и внешними устройствами. Благодаря созданию TWAIN-спецификации было достигнуто единообразие, совместившее программное обеспечение для различных аппаратных платформ, созданных различными мировыми производителями сканеров.

Программное обеспечение современных компьютеров

Операционные системы

Программное обеспечение ЭВМ условно принято разделять на три группы:

• общесистемное программное обеспечение

• надбазовое программное обеспечение

• прикладное программное обеспечение

Под общесистемным программным обеспечением в настоящее время понимают современные операционные системы. Главная функция операционных систем – представление пользователю некоторой виртуальной ЭВМ, которая обеспечивает удобный интерфейс для большого количества пользователей, не являющихся специалистами в области вычислительной техники. Операционные системы предназначены для управления всеми видами ресурсов вычислительной системы. Основными ресурсами являются:

• процессорное время

• управление памятью

• управление файловой системой

• управление периферийными устройствами и аппаратными средствами ЭВМ

История операционных систем насчитывает около 40 лет. Она во многом определяется развитием элементной базы и вычислительной аппаратуры. Первые цифровые вычислительные машины работали без операционных систем. Все задачи организации вычислительного процесса решались вручную, индивидуально каждым программистом.

Прообразом современных операционных систем явились операционные мониторные системы больших ЭВМ (мэнфреймов). Все задачи, связанные с управлением ЭВМ, автоматизировались с помощью мониторных систем. В 70-х гг. появились ЭВМ, построенные на базе интегральных микросхем. Один из наиболее ярких представителей таких ЭВМ – американская вычислительная машина IBM-360, на которой с помощью системного программного обеспечения были реализованы основные концепции, присущие современным операционным системам, а именно мультипрограммирование, мультипроцессирование, многотерминальный режим, виртуальная память, файловые системы и сетевая работа.

Реализация мультипрограммирования потребовала внесения изменений в аппаратуру компьютера. В процессорах появилось два режима работы: привилегированный и пользовательский. Появились специальные регистры, которые давали возможность переключения процессора с одной задачи на другую. Также появилась развитая система прерываний и средства защиты областей памяти. В конце 60-х гг. были начаты работы по созданию компьютерных систем. В это время в США была создана компьютерная сеть Arpanet, которая явилась прообразом современной сети Internet. Arpanet была испытательным полигоном для сетевых операционных систем; она дала возможность проверить в реальных условиях взаимодействие отдельных компьютеров, степень масштабируемости, а также способность работы при пиковых нагрузках. В середине 70-х гг. начинается производство мини-ЭВМ. Архитектура этих компьютеров была несколько проще, чем у мэнфреймов, что нашло отражение в операционной системе миникомпьютеров. Именно мини-ЭВМ послужили основой для создания локальных сетей ЭВМ, что вызвало необходимость организации совместного использования данных и периферийного оборудования.

Сетевые операционные системы

Начиная с середины 90-х гг. все операционные системы становятся сетевыми. Сетевые функции встраиваются в ядро операционной системы, являясь ее неотъемлемой частью. Операционные системы в настоящее время имеют средства для обеспечения технологии локальных, глобальных и корпоративных сетей. В операционных системах используются средства мультиплексирования нескольких стековых протоколов, за счет которых компьютеры поддерживают одновременную сетевую работу с разнородными клиентами и серверами. Сейчас существуют специализированные операционные системы, которые предназначены для выполнения коммуникационных задач. Эти операционные системы выполняют функции муршрутизаторов, а также обеспечивают работу в мультипрограммном режиме нескольких программ, каждая из которых реализует один из коммуникационных протоколов.

Одним из основных стек-протоколов является протокол TCP/IP, в комплект которого могут входить разные дополнительные утилиты, обеспечивающие функционирование таких устройств, как шлюзы, демультиплексоры и т.д.

В настоящее время особое внимание уделяется корпоративным сетевым операционным системам. Корпоративные операционные системы обладают способностью хорошо работать в крупных сетях, состоящих из большого количества компьютеров. Характерная черта таких сетей – высокая степень гетерогенности программных и аппаратных средств. Поэтому к корпоративным операционным системам предъявляются требования совместимости с различными аппаратными возможностями для корпоративных операционных систем важно наличие средств централизованного администрирования и управления, позволяющих в единой базе данных хранить учетные записи о различных пользователях, разных типах коммуникационных устройств, а также о компьютерах и специализированных модулях программного обеспечения, имеющихся в сети. В современных операционных системах средства централизованного администрирования базируются на единой справочной службе. Создание многофункциональной справочной службы является стратегическим направлением развития операционных систем. Эта служба необходима для обеспечения требуемого качества обслуживания трафика пользователей, поддержки крупных распределенных приложений, а также для построения эффективной почтовой системы.

Развитие современных операционных сетевых систем предъявляет высокие требования к средствам обеспечения безопасности. Это связано с ценностью информации, обрабатываемой компьютерами, а также с повышением уровня потерь при передаче данных по сетям (например, по сети Internet). Многие операционные системы развивают сейчас средства защиты информации, основанные на шифрации данных, их авторизации, а также их принадлежности к конкретным проблемным областям.

Для современных операционных систем характерна многоплатформенность, то есть способность работать на совершенно разных типах компьютеров. Многие операционные системы имеют специальные версии для поддержки кластерных архитектур, обеспечивающих высокую производительность и отказоустойчивость.

Современные сетевые операционные системы представляют собой комплекс взаимосвязанных программ, предназначенный для улучшения эффективности компьютера путем повышения рациональности, а также путем обеспечения удобной работы пользователя через представление ему расширенной виртуальной машины.

К числу основных аппаратных и информационных ресурсов современных компьютеров, управление которыми осуществляет операционная система, относят процессоры, основную память, таймеры, наборы данных, накопители информации на дисках и магнитных носителях, сетевые устройства, принтеры и другое периферийное оборудование.

Для решения задач управления разные операционные системы используют разные алгоритмы, особенности которых определяют облик той или иной операционной системы.

Наиболее важными подсистемами операционных систем являются подсистемы управления процессами, памятью, файлами, внешними устройствами, а также подсистемы пользовательского интерфейса, защиты данных и администрирования.

Прикладному программисту возможности операционных систем доступны в виде набора функций, составляющих интерфейс прикладного программирования (API).

Вообще термин «сетевая операционная система» используется в двух значениях: 1) как совокупность всех компьютеров в сети; 2) как операционная система отдельного компьютера, способного работать в сети.

К основным функциональным компонентам сетевой операционной системы относятся средства управления локальными ресурсами и сетевые средства. Сетевые средства делятся на три составляющих:

1. средства предоставления локальных ресурсов и услуг в общее пользование (серверная часть операционной системы);

2. средства запроса доступа к удаленным ресурсам и услугам (клиентская часть операционной системы, или редиректор);

3. транспортные средства операционной системы, которые обеспечивают передачу информации в сети. К этой группе относятся маршрутизаторы, сетевые адаптеры, коммутаторы и другие устройства, необходимые для решения коммуникационных задач.

Совокупность серверной и клиентской частей, предоставляющих доступ к конкретному типу ресурсов компьютера через сеть, называется сетевой службой. Сетевая служба предоставляет набор услуг, поэтому часто ее называют сетевым сервисом. Наиболее важные сетевые службы: файловая, служба печати и т.д. сетевые службы могут быть встроенными в операционную систему или существовать в виде оболочки, а могут поставляться дополнительно в виде отдельного программного продукта.

В зависимости от того, как распределены функции между участниками сети, компьютеры могут выступать в трех разных функциях:

1. компьютер, занимающийся обслуживанием запросов других компьютеров в сети, называется выделенным сервером сети;

2. компьютер, обращающийся с запросами к ресурсам других компьютеров в сети, исполняет роль клиентского узла;

3. компьютер, совмещающий функции клиента и сервера, называется одноранговым узлом

Компьютерные сети, состоящие из одноранговых узлов, называются одноранговыми. В этой сети все компьютеры потенциально имеют равные возможности. Одноранговые сети предназначены для объединения в сеть до 20 компьютеров. Преимущество таких сетей заключается в простоте организации и эксплуатации.

В сетях с выделенным сервером используются специальные варианты сетевых операционных систем, оптимизированные для работы либо в роли серверов, либо в роли клиентов. Для серверных операционных систем характерны: поддержка мощных аппаратных платформ, в том числе мультипроцессорных; широкий набор сетевых служб; поддержка большого числа одновременно выполняемых процессов и сетевых подключений; наличие развитых средств защиты, а также средств централизованного администрирования сети.

Клиентские операционные системы могут быть более простыми. Их задача – обеспечение удобного пользовательского интерфейса, а также набор редиректоров, позволяющих получить доступ к разным сетевым ресурсам.

В число требований, предъявляемых к сетевым операционным системам, входит функциональная полнота, эффективность управления ресурсами, модульность, а также расширяемость, переносимость, многоплатформенность, совместимость на уровне приложений и пользовательских интерфейсов, кроме того, надежность, безопасность и высокая производительность. Современная сетевая операционная система берет на себя функции выбора параметров операционной среды, используя для этого различные адаптивные алгоритмы. В коммуникативных протоколах используются тайм-ауты, которые зависят от условий работы сети. Распределение оперативной памяти между процессами осуществляется автоматически с помощью механизмов виртуальной памяти в зависимости от активности этих процессов, а также анализа информации о частоте использования той или иной страницы оперативной памяти.

Архитектура операционных систем

Простейшая структуризация операционной системы состоит в разделении всех компонентов операционной системы на модули, выполняющие основные функции, называемые вместе ядром операционной системы, и дополнительные модули, выполняющие сервисные или просто вспомогательные функции.

Вспомогательные модули могут быть оформлены либо в виде приложений, либо в виде дополнительной библиотеки процедур. Вспомогательные модули загружаются в оперативную память только во время выполнения своих функций, то есть являются транзитными.

Файлы, составляющие ядро операционной системы, постоянно находятся в оперативной памяти, то есть являются резидентными. Наличие ядра операционной системы в оперативной памяти является обязательным, так как все функции, связанные с управлением аппаратными средствами и с загрузкой самой операционной системы, являются приоритетными.

При наличии аппаратной поддержки режимов с разными уровнями полномочий, устойчивость операционной системы может быть повышена путем выполнения функций ядра в привилегированном режиме. При этом вспомогательные модули операционной системы и программные приложения будут функционировать в пользовательском режиме. Организация работы операционной системы в двух режимах позволяет защитить коды и данные от влияния различных приложений и несанкционированного доступа. В этом случае операционная система может выступать в роли «арбитра» при распределении ресурсов вычислительной системы.

Ядро, являясь структурным элементом операционной системы, может быть разложено на следующие слои, или менеджеры:

1. Машинно-зависимые компоненты операционной системы;

2. Базовые механизмы ядра;

3. Менеджеры ресурсов;

4. Интерфейс системных вызовов.

При такой организации ядра операционной системы каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс. На основе функций нижележащего слоя следующий по иерархии слой ядра строит свои функции, более сложные и более мощные, которые в свою очередь оказываются примитивами для создания новых функций следующего, вышележащего слоя. Многослойная организация операционных систем упрощает их разработку и организацию.

Любая операционная система для решения своих задач взаимодействует с аппаратными средствами ЭВМ, а именно со средствами поддержки привилегированного режима, со средствами трансляции адресов, переключения процессов и защиты областей памяти, а также с системой прерываний и с системным таймером. Выполнение этих функций делает операционные системы машинно-зависимыми и привязанными к определенной аппаратной платформе.

Переносимость операционных систем может быть достигнута за счет выполнения следующих правил:

1. Большая часть кода операционной системы должна быть написана на языке, трансляторы которого имеются на всех компьютерах, куда предполагается переносить операционную систему;

2. Объем машинно-зависимых частей кода, которые непосредственно взаимодействуют с аппаратными средствами, должен быть по возможности минимизирован;

3. Аппаратно-зависимый код должен быть надежно локализован в нескольких модулях.

Микроядерная архитектура является альтернативой классическому способу построения операционной системы. В микроядерных операционных системах в привилегированном режиме работает небольшая часть системных программ, называемая микроядром. Все остальные высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Микроядерные операционные системы удовлетворяют большинству требований и сочетают в себе высокие переносимость, расширяемость, надежность, а также обеспечивают поддержку распределенных приложений. Вместе с тем, микроядерная архитектура снижает производительность операционной работы, так как большинство ее дополнительных функций не входит в состав операционной системы.

Каждая операционная система может создавать, как минимум, одну прикладную программную среду. Прикладная программная среда – это совокупность средств операционной системы, предназначенных для организации и выполнения работы приложений , использующих определенную систему машинных команд, а также определенный формат исполняемой команды.

В рамках одной операционной системы необходимо обеспечить совместимость различных программных сред. Для реализации этой функции могут использоваться различные операционные системы, концепции эмуляции двоичного кода, а также трансляция дополнительных программных продуктов, позволяющих совместить приложения.

Компьютерные сети

Первые компьютерные сети появились в конце 60-х гг., они были выполнены американскими фирмами IBM и DEC. Одна из самых успешных среди первых компьютерных сетей – Arpanet – была разработкой военного министерства США. Она связала научные центры США с военными учреждениями. В то время в качестве среды передачи данных использовались телефонные и телеграфные каналы. В рамках этого проекта впервые были разработаны протоколы семейства TCP/IP, которое позволило обеспечить передачу данных в глобальных и локальных сетях. В дальнейшем семейство протоколов TCP/IP было положено в основу сетевых взаимодействий операционных систем Unix.

Существует множество классификаций компьютерных сетей. Например, по типу топологии сети. Топология – это способ размещения узлов в сети и структура соединений между ними.

К базовым сетевым топологиям относят:

1. Произвольную

2. Иерархическую

3. Звездообразную

4. Кольцевую

5. Шинную

6. Сотовую

7. смешанную

Классификация компьютерных сетей и их функции

Один из принципов классификации компьютерных сетей – территориальное распределение. На основе этого принципа выделяют следующие типы сетей:

• Local-area network (локальные компьютерные сети). Они охватывают отдельные помещения или несколько расположенных рядом зданий, которые находятся на территории, не превышающей в радиусе 10 км;

• Wide-area network (распределенные компьютерные сети) – это сети масштаба студенческого городка или крупной компании (campus-area network), крупного города (metropolitan-area network), нескольких стран или континентов (global-area network).

Компьютерные сети выполняют множество важных функций. В частности, объединение компьютеров в сеть позволяет:

1. Осуществлять быструю и надежную передачу данных для немедленного использования информации;

2. Совместно использовать аппаратные и программные ресурсы компьютеров, что позволяет добиться экономии материальных и технических средств;

3. Организовать доступ к ресурсам всех компьютеров в сети при одновременном обеспечении программных и информационных средств сетей;

4. Получить доступ к удаленным базам данных.

Любая локальная вычислительная сеть обеспечивается аппаратным и программным сопровождением. К аппаратному обеспечению компьютерных сетей относят сетевые адаптеры, коммуникационное оборудование (это так называемая среда передачи данных) и сами персональные компьютеры.

Сетевые адаптеры представляют собой специальные устройства, предназначенные для подключения компьютеров к среде передачи данных. Сетевые адаптеры, как правило, устанавливают на материнскую плату, размещенную в системном блоке компьютера. Выбор сетевого адаптера зависти от типа компьютера, требуемой скорости передачи данных и от характеристик коммуникационного оборудования.

Среда передачи данных – это специальный кабель, к которому можно подключить компьютеры через специальные коннекторы. Одним из способов организации простейшей компьютерной сети является использование концентратора, или «хаба», в виде простой витой пары. Концентратор имеет порты, к которым через специальные кабели подключают компьютеры. В качестве сред передачи данных могут использоваться: коаксиальный кабель, обычные провода в виде витой пары, оптоволоконный кабель, а также беспроводные среды. К беспроводным средам передачи данных относят радиоэфир, микроволны, инфракрасное и лазерное излучение.

При наличии аппаратных средств поддержки компьютерных систем необходимо устанавливать также специальные программные драйверы, которые обеспечивают передачу данных через сетевые адаптеры. К программному обеспечению компьютерных систем относят сетевые операционные системы, которые позволяют управлять работой сети по одному из двух принципов:

• Централизованное управление

• Децентрализованное управление

В соответствии с этими принципами компьютерные сети делят на:

• Одноранговые

• С выделенным сервером

Одноранговые сети – это сети с невыделенным сервером, то есть сети, у которых осуществляется взаимодействие между отдельными компьютерами, входящими в состав компьютерной сети. Все компьютеры таких сетей одновременно исполняют роль и клиента и сервера.

В сетях с выделенным сервером один из компьютеров сети предназначен для обработки запросов, формирования ответов отдельным клиентам компьютерных сетей. В качестве сервера, как правило, используют мощный компьютер, который характеризуется высокой производительностью, большим объемом дисковой памяти, повышенной надежностью.

К достоинствам одноранговых сетей относятся относительно простая структура и непосредственный доступ компьютеров сети к ресурсам друг друга. К их недостаткам относятся невозможность централизованной настройки параметров сети, незначительное количество компьютеров в сети (не более 20), слабая защита компьютеров, так как отдельные пользователи могут влиять на распределение компьютеров в сети.

Сети с выделенным сервером имеют следующие преимущества: хорошая защита данных, возможность создания больших сетей (сотни и даже тысячи компьютеров), высокая пропускная способность сети. К недостаткам таких сетей относятся высокая стоимость сетевых операционных систем и компьютеров-серверов, а также то, что компьютеры-серверы не являются рабочими местами для пользователей, тем самым усложняется конфигурация сетей.

Итак, под сетью ЭВМ понимается взаимосвязанный набор конечного оборудования данных (data terminal equipment), генерирующего и потребляющего информацию в сети передачи данных, которая обеспечивает обмен информацией между отдельными абонентами сети. Аппаратура канала данных обеспечивает преобразование информации в форму, которую используют для передачи данных в сети. Сеть передачи данных обеспечивает физическую связь удаленных абонентов.

Виды каналов передачи данных

Существуют выделенные и коммутируемые каналы.

Если между двумя абонентами установлена постоянная связь, то канал называют выделенным, или постоянным. Такой канал может быть собственным или абонируемым.

Если соединение между абонентами устанавливают каждый раз при передаче данных, то такой канал называют коммутируемым. Для таких каналов существуют три этапа передачи данных:

1. Установка соединения;

2. Собственно передачи данных;

3. Разрыв соединения после окончания передачи данных.

К достоинствам выделенного канала относятся высокая скорость передачи данных, высокое качество сигналов, отсутствие блокировок, малое время, требуемое для установки соединения между абонентами сети. К недостаткам же такого канала относят высокую стоимость передачи информации и отсутствие гибкости.

Коммутируемый канал также имеет ряд достоинств, среди них: гибкость и невысокая стоимость передачи данных. А недостатки таких каналов в том, что возможны блокировки, качество передачи невысокое, а стоимость передачи информации в случае ее большого объема, напротив, высока.

Каналы передачи данных классифицируются по направлению передачи информации на следующие виды:

Симплексные каналы – это каналы, у которых передача данных осуществляется в одном направлении (примеры: радио- и телеканалы);

Полудуплексные каналы – это каналы, у которых передача информации осуществляется в двух направлениях, но по очереди (пример: передача по шине в компьютерной сети);

Дуплексные каналы – это каналы, передача по которым осуществляется в двух направлениях одновременно. Это достигается либо использованием проводной связи (телефон), либо использованием различных частот.

По виду передаваемых сигналов каналы делятся на аналоговые и цифровые. По аналоговым каналам связи данные передаются в виде синусоидальных гармонических колебаний. Передача информации по таким каналам осуществляется за счет методов модуляции. Кодирование данных при аналоговой передаче проводят, используя следующие виды модуляции: амплитудную, частотную, фазовую. Современные протоколы передачи данных по аналоговым каналам используют также совмещенные виды модуляции.

Цифровые каналы передачи информации осуществляют в импульсном виде. При таком способе нет необходимости в преобразовании сигналов в аналоговые и обратно. При цифровой передаче данных используют разные способы кодирования. Методы кодирования должны отвечать следующим требованиям: простота, самосинхронизация, использование одного уровня напряжения, максимальное использование полосы пропускания данных.

Модель взаимодействия открытых систем

В рамках международной организации по синхронизации была разработана модель взаимодействия открытых систем – Open System of Interconnection (OSI). Эта модель представляет собой рекомендации по структурной организации сетевых подсистем. Эти рекомендации обеспечивают взаимодействие систем с разной архитектурой и разным программным сопровождением.

Эту модель часто называют семиуровневой моделью, так как она обеспечивает 7 основных уровней взаимодействия. Самый нижний уровень взаимодействия – физический. Он определяет взаимодействие с физической средой, задает механические, электрические и функциональные стандарты взаимодействия. На физическом уровне осуществляется установление соединения между абонентами, его поддержание и разрыв.

Второй уровень – канальный. Этот уровень, непосредственно взаимодействующий с физическим, отвечает за передачу отдельных кадров или фреймов в рамках одного звена данных. Канальный уровень добавляет к пакету, пришедшему от сетевого уровня преамбулу, а именно физические адреса источника и приемника информации. На этом уровне осуществляется проверка контрольного кода. Канальный уровень также отвечает за разделение среды передачи данных, то есть он определяет дисциплину захвата физического канала.

Третий уровень – сетевой. Он отвечает за пересылку пакетов информации между сетями. Сетевой уровень организуется путем создания логического канала для передачи пакетов от сети-источника в сеть-приемник. Основная функция этого уровня – маршрутизация пакетов, то есть выбор оптимального маршрута передачи информации. Существуют разные алгоритмы маршрутизации, которые учитывают загруженность каналов, их пропускную способность и другие факторы.

Четвертый уровень – транспортный. Он организует доставку сообщения от источника к приемнику. В сетях с пакетной коммутацией на этом уровне обеспечивается разбиение сообщения на пакеты и сборка пакетов в узле-приемнике.

Пятый уровень – сеансовый. Он управляет сеансом связи: обеспечивает установление, поддержание и разрыв при завершении связи. Сеанс может быть односторонним (симплексным), полудуплексным и дуплексным в соответствии с тем какой тип каналов используется для связи. В ходе сеанса связи фиксируются контрольные точки. При аварийном разрыве связи именно этот уровень обеспечивает ее восстановление и продолжение от ближайшей контрольной точки. На этом уровне также решаются вопросы контроля доступа, оплаты ресурсов за сервер и другие.

Шестой уровень – представительный. Он отвечает за форму представления данных, например, за перекодировку данных из одной систему в другую. Часто встречающийся на практике пример необходимости такой перекодировки – это обмен информацией между крупными ЭВМ и ПК. На этих двух типах вычислительных машин одни и те же символы представлены разными кодами, именно поэтому при обмене данными их приходится перекодировать.

Седьмой (высший) уровень – прикладной. Это уровень прикладных подсистем компьютерной сети. Под прикладными сетевыми подсистемами понимают группу подсистем, которая упрощает доступ к ресурсам и взаимодействие в сети.

Сетевой протокол и интерфейс

Сетевой протокол – это совокупность правил, обеспечивающая взаимодействие сетевых подсистем одного уровня. Он определяет форматы пакетов, последовательность их передачи, время ожидания ответов и т.д.

Сетевой интерфейс – это совокупность правил, определяющая взаимодействие смежных уровней в одной системе.

При передаче данных от верхних уровней к нижним к этим данным добавляются заголовки, а при движении обратно заголовки убираются. В заголовках размещают блоки информации, управляющие взаимодействием в рамках протоколов соответствующих уровней.

Данные, передаваемые на 5, 6, 7 уровнях называются сообщениями;

данные, передаваемые на 4 уровне, называются сегментами;

данные, передаваемые на 3 уровне, называются дайтограммами;

данные, передаваемые на 2 уровне, называются кадрами, или фреймами;

данные, передаваемые на 1 уровне, называются блоками битов.

Адресация в Интернете

Для того, чтобы в процессе обмена информацией компьютеры могли «найти друг другу», в сети Internet существует единая система адресации, основанная на использовании IP-адреса. Каждый компьютер, подключенный к Internet, имеет свой уникальный 32-битный (в двоичной системе) IP-адрес. Система IP-адресации учитывает структуру Интернета, то есть то, что Интернет является сетью сетей, а не объединением отдельных компьютеров. IP-адрес содержит адрес сети и адрес компьютера в данной сети.

Для обеспечения максимальной гибкости в процессе распределения IP-адресов, в зависимости от количества компьютеров в сети, адреса разделяются на три класса А, В, С. Первые биты адреса отводятся для идентификации класса, а остальные разделяются на адрес сети и адрес компьютера (см. табл.):

Таблица. IP-адресация в сетях различных классов

Класс А 0 Адрес сети (7 битов) Адрес компьютера (24 бита)

Класс В 1 0 Адрес сети (14 битов) Адрес компьютера (16 битов)

Класс С 1 1 0 Адрес сети (21 бит) Адрес компьютера (8 битов)

Например, адрес сети класса А имеет только 7 битов для адреса сети и 24 бита для адреса компьютера, то есть может существовать лишь 27=128 сетей этого класса, зато в каждой сети может содержаться 224=16 777 216 компьютеров.

В десятичной записи IP-адрес состоит из 4 чисел, разделенных точками, каждое из которых лежит в диапазоне от 0 до 255. например, IP-адрес может иметь такой вид: 195.34.32.11.

Достаточно просто определить по первому числу IP-адреса компьютера его принадлежность к сети того или иного класса:

Адреса класса А – число от 0 до 127;

Адреса класса В – число от 128 до 191;

Адреса класса С – число от 192 до 223.

Провайдеры часто представляют пользователям доступ в Интернет не с пос-тоянным, а с динамическим IP-адресом, который может меняться при каждом подклю-чении к сети. В процессе сеанса работы в Интернете можно определить свой текущий IP-адрес.

Доменная система имен. Компьютеры легко могут найти друг друга по числовому IP-адресу, однако человеку запомнить числовой адрес нелегко, и для удобства была введена Доменная Система Имен (DNS – Domain Name System).

Доменные имена и IP-адреса распределяются международным координационным центром доменных имен и IP- адресов (ICANN), в который входят по 5 представителей от каждого континента. Доменная система имен имеет иерархическую структуру: домены верхнего уровня - домены второго уровня и так далее. Домены верхнего уровня бывают двух типов: географические (двухбуквенные – каждой стране соответствует двухбуквенный код) и административные (трехбуквенные).

Таблица. Некоторые имена доменов верхнего уровня.

Административные Тип организации Географические Страна

com Коммерческая ca Канада

edu Образовательная de Германия

gov Правительственная США jp Япония

int Международная ru Россия

mil Военная США su Бывший СССР

net Компьютерная сеть uk Англия /Ирландия

org Некоммерческая us США

России принадлежит географический домен Ru. Интересно, что давно су-ществующие серверы могут относиться к домену su (СССР). Обозначение ад-министративного домена позволяет определить профиль организации, владельца домена.

Протокол передачи данных TCP / IP

Сеть Интернет, являющаяся сетью сетей и объединяющая громадное количество различных локальных, региональных и корпоративных сетей, функционирует и развивается благодаря использованию единого протокола передачи данных TCP/IP. Этот термин включает название двух протоколов:

- Transmission Control Protocol (TCP)- транспортный протокол;

- Internet Protocol (IP) – протокол маршрутизации.

Определение маршрута прохождения информации. «География» Интернета существенно отличается от привычной нам географии. Скорость получения информации зависит не от удаленности Web- сервера, а от количества промежуточных серверов и качества линий связи (их пропускной способности), по которым передается информация от узла к узлу.

С маршрутом прохождения информации в Интернете можно познакомиться достаточно просто. Специальная программа tracert.exe, которая входит в состав Windows, позволяет проследить, через какие серверы и с какой задержкой передается информация с выбранного сервера Интернет на ваш компьютер.

Transmission Control Protocol (TCP), то есть транспортный протокол, обеспечивает разбиение файлов на IP-пакеты в процессе передачи и сборку файлов в процессе получения.

Интересно, что для IP-протокола, ответственного за маршрутизацию, пакеты совершенно никак не связанны между собой. Поэтому последний и IP-пакет вполне может по пути обогнать первый IР-пакет. Может сложиться так, что даже маршруты доставки этих пакетов окажутся совершенно разными. Однако протокол TCP дождется IP-пакета и соберет исходный файл в правильной последовательности.

Определение времени обмена IP-пакетами. Время обмена IP-пакетами между локальным компьютером и сервером Интернета можно определить с помощью утилиты ping, которая входит в состав операционной системы Windows. Утилита посылает четыре IP-пакета по указанному адресу и показывает суммарное время передачи и приема для каждого пакета.

Специальное коммуникационное оборудование

В состав компьютерных сетей обычно входят серверы, рабочие станции и специальное коммуникационное оборудование. К специальному коммуникационному оборудованию относят репиторы (повторители), концентраторы, мосты, коммутаторы, маршрутизаторы, шлюзы.

Репитор – это устройство, предназначенное для увеличения длины сети и количества подключаемых компьютеров. Репиторы бывают пассивными и активными. Пассивные репиторы служат для разветвления кабельной системы, а активные репиторы позволяют усиливать сигналы в сети. Репиторы работают на первом уровне модели взаимодействия открытых систем.

Концентратор – это многопортовый репитор. Концентраторы используют в качестве коммутационного устройства корпоративных и локальных компьютерных систем. Существуют модульные и наращиваемые концентраторы.

Мосты – это устройства, работающие на втором уровне модели взаимодействия открытых систем. Мосты обеспечивают выполнение всех функций репитора и повышают пропускную способность сети за счет разделения потока запросов по сегментам. Мосты бывают:

• Самообучающиеся

• С маршрутизацией от источника

Коммутаторы (переключатели) – это многопортовые мосты. Они осуществляют быструю коммутацию портов. Каждый порт обычно имеет свой буфер.

Маршрутизатор выполняет все функции репитора и моста, работает н третьем уровне взаимодействия открытых систем. Основная функция маршрутизаторов – соединение различных компьютерных сетей. Маршрутизаторы могут быть автономными устройствами, а могут быть выполнены в виде компьютеров, на которых устанавливаются модули маршрутизаторов. Маршрутизатор содержит таблицу, в которой содержится адресная информация о сетях назначения, а также о выходных портах, ведущих к этим сетям.

Шлюзы – это устройства, которые работают на 4-ом и более высоких уровнях модели взаимодействия открытых систем. Шлюзы используются для объединения сетей с разной архитектурой.

Приложение 1

История развития вычислительной техники

Приложение 2

История развития персональных компьютеров

Показать полностью…
Похожие документы в приложении