Всё для Учёбы — студенческий файлообменник
бесплатно
doc

Реферат «Графические станции в допечатных процессах» по Технологии допечатных процессов (Макеева Т. А.)

Применение компьютерной техники в современной жизни стало незаменимым. Огромное количество отраслей используют вычислительные машины для ускорения решения задач. До недавнего времени вся компьютерная техника была лишь вспомогательным устройством для человека. Компьютер проводил различные вычисления, а основная работа лежала всё равно на человеке. Перед человечеством же стояли задачи масштабных строительств, проектов на будущее, испытаний, которых компьютер решить не мог. С появлением мощных графических станций, а так же компьютеров, способных решать не только математические задачи, но и визуализировать сложнейшие технологические процессы на экране, начинается новая эра в компьютерной промышленности.

Графическая станция – это ЭВМ, акцент в которой сделан на графическую подсистему, то есть на графический адаптер (видеоадаптер), на оперативную память, быстродействие процессора, а так же хорошую видеокарту.

Естественно говоря о графических станциях, нельзя так же забывать о мониторах, как о системе визуализации.

История развития ПК.

Появление понятия «Персональный компьютер» относится к концу 70-х годов, когда распространение ПК вызвало некоторое снижение спроса на большие и мини ЭВМ. Компания IBM (International Bussines Machines

Corporation)-ведущий производитель больших ЭВМ, решила попробовать свои силы на этом новом для нее рынке оборудования. Одно из подразделений компании получило задание на разработку проекта ПК. Новый компьютер было решено строить по модульной схеме. Также было разрешено использовать комплектующие и блоки как разработанные IBM, так и изготовленные другими фирмами. Эти факторы сыграли важную роль в дальнейшем развитии рынка ПК, заложив основу так называемой «открытой архитектуры».

В качестве основы нового компьютера был выбран 16-разрядный микропроцессор Intel-8088 (разработка 1979г.), позволявший работать с 1Мб памяти. Учитывая тот факт, что другие микропроцессоры, существовавшие в то время, были ограничены 64Кб, использование Intel-8088 значительно увеличивало потенциальные возможности проектируемого ПК. Заказ на разработку программного обеспечения для ПК получила фирма Microsoft.

Проект был завершен в августе 1981г. Компьютер, получивший название

IBM PC, произвел настоящую информационную революцию, вытеснив с рынка в течение нескольких лет старые, 8-битовые модели ПК. IBM PC стал фактически стандартом для производителей компьютерной техники. Относительно низкая стоимость (1000-1500долларов) в сочетании с наличием разъемов подключения дополнительных устройств расширения, а также возможность несложной замены устаревших или вышедших из строя частей ПК обусловили широкий спрос на IBM

PC, который привел к лавинообразному нарастанию производства ПК, совместимых с оригинальной моделью. Это семейство микрокомпьютеров получило название “клона” IBM, следующим из которых стал ПК IBM PC AT на основе микропроцессора 80286 (разработка 1981г.).

На сегодняшний день доля IBM-совместимых компьютеров составляет около

90% рынка ПК.

В зависимости от области применения и конфигурации системы ПК делятся на следующие классы:

1. Серверы;

2. Рабочие станции;

3. Терминалы;

4. «Домашние» ПК.

Рабочей станцией называется ПК, используемый одним пользователем. Если

РС используется для решения одной, строго специальной задачи, то она получает название этой задачи. Например, для дизайнера, имеющего дело с графикой, принципиально важно иметь ПК с большим объемом ОЗУ (4Гб и более), высокопроизводительным процессором, хорошей видео картой SVGA 512Мб и более, видео ускорителем и монитором от 17 дюймов. Такая рабочая станция называется графической станцией.

В настоящее время допечатные процессы базируются на современных компьютерных технологиях. Уже на базе первого поколения ПК появились настольные издательства, которые позволили первые этапы допечатного процесса – набор и правку текста, макетирование – перенести из цехов типографии непосредственно в издательство. Дальнейшее развитие компьютерной техники расширило возможности настольной издательской системы и позволило весь комплекс допечатных процессов вынести за стены типографии.

Настольные издательские системы своим появлением и бурным развитием обязаны трем основным факторам:

1.Персоональный компьютер.

2.Графический интерфейс

3.Язык PostScript.

____________________________________________

Графические станции, применяемые в допечатных процессах.

Графические станции DESTEN

DESTEN eXtreme 2D - Для работы с 2D графикой

Графические станции DESTEN eXtreme серии 2D поддерживают несколько мониторов и являются оптимальным решением для профессионалов, работающих в сфере финансов и нелинейного видеомонтажа (NLE). Благодаря ведущему программно-аппаратному обеспечению, данная серия обеспечивает беспрецедентную производительность и стабильность. Серия 2D состоит из двух продуктов: DESTEN http://desten.ru/dn/export/sites/desten/general/production/pc_image/nvidia_quadro.jpgeXtreme 2D 100M2 и DESTEN eXtreme 2D 100M4.

http://desten.ru/dn/export/sites/desten/general/production/extreme/2D.html

Подробнее http://desten.ru/dn/export/sites/desten/general/production/ergotechs/

http://desten.ru/dn/export/sites/desten/general/production/pc_image/intel_pentium_dual_core.jpg

http://desten.ru/dn/export/sites/desten/general/production/pc_image/intel_core_2_duo.jpg

http://desten.ru/dn/export/sites/desten/general/production/pc_image/nvidia_quadro.jpg

DESTEN eXtreme 3D - Для работы с 3D графикой

Графические станции DESTEN eXtreme серии 3D применяются для 3D моделирования, научных и инженерных расчетов и ресурсоемких графических пакетов. Серия 3D состоит из трех продуктов: DESTEN eXtreme 3D 100E, DESTEN eXtreme 3D 100P и DESTEN eXtreme 3D 100H.

http://desten.ru/dn/export/sites/desten/general/production/pc_image/intel_xeon.jpghttp://desten.ru/dn/export/sites/desten/general/production/ergotechs/http://desten.ru/dn/export/sites/desten/general/production/extreme/SDI.html

Подробнее

Графические станции Arbyte

• Arbyte CADStation WS201Е - высокопроизводительная однопроцессорная рабочая станция с поддержкой технологии EM64T, служит для решения задач автоматизированного проектирования средней сложности

• Arbyte CADStation WS412E - высокопроизводительная однопроцессорная рабочая станция с поддержкой технологии EM64T

• Arbyte CADStation WS610E - высокопроизводительная двухпроцессорная рабочая станция для работы с большими трехмерными сборками и моделями высокой сложности, проведения сложных инженерных расчетов на основе системной платы Intel SE7525GP2

• Arbyte CADStation WS611E - высокопроизводительная двухпроцессорная рабочая станция для работы с большими трехмерными сборками и моделями высокой сложности, проведения сложных инженерных расчетов на основе системной платы Intel SE7525RP2

• Arbyte CADStation WSA 400E - высокопроизводительная однопроцессорная рабочая станция с поддержкой 64-разрядных приложений

• Arbyte CADStation WSA 600E - высокопроизводительная двухпроцессорная рабочая станция с поддержкой 64-разрядных приложений

Составные элементы графических станций.

Процессор.

Центра́льный проце́ссор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — процессор машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера.

Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших (СБИС) интегральных схем.

Суперскалярная архитектура

Способность выполнения нескольких машинных инструкций за один такт процессора. Появление этой технологии привело к существенному увеличению производительности.

CISC-процессоры

Complex Instruction Set Computer — вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

RISC-процессоры

Reduced Instruction Set Computing (technology) — вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (John Cocke) из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson).

Самая распространённая реализация этой архитектуры представлена процессорами серии PowerPC, включая G3, G4 и G5. Довольно известная реализация данной архитектуры — процессоры серий MIPS и Alpha.

MISC-процессоры

Minimum Instruction Set Computing — вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию системы «Мультипроцессор».

На данный момент массово доступны процессоры с двумя ядрами, в частности Intel Core 2 Duo на ядре Conroe и Athlon64X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе.

Двухядерность поцессоров включает такие понятия, как наличие логических и физических ядер: например двухядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Duo состоит из двух физических ядер, что существенно влияет на скорость его работы.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхьядерные процессоры для серверов AMD Quad-Core Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barсelona[1]. 19 ноября 2007 вышел в продажу четырёхьядерный процессор для домашних компьютеров AMD Quad-Core Phenom[2]. Эти процесоры реализуют новую микроархитектуру K8L (K10).

27 сентября 2006 года Intel продемонстрировала прототип 80-ядерного процессора[3]. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, а это в свою очередь ожидается к 2010 году.

Кэширование

Кэширование — это использование дополнительной быстродействующей памяти (кэш-памяти) для хранения копий блоков информации из основной (оперативной) памяти, вероятность обращения к которым в ближайшее время велика.

Различают кэши 1-, 2- и 3-го уровней. Кэш 1-го уровня имеет наименьшую латентность (время доступа), но малый размер, кроме того кэши первого уровня часто делаются многопортовыми. Так, процессоры AMD K8 умели производить 64 бит запись+64 бит чтение либо два 64-бит чтения за такт, процессоры Intel Core могут производить 128 бит запись+128 бит чтение за такт. Кэш 2-го уровня обычно имеет значительно большие латентности доступа, но его можно сделать значительно больше по размеру. Кэш 3-го уровня самый большой по объёму и довольно медленный, но всё же он гораздо быстрее, чем оперативная память.

Оперативная память

Операти́вная па́мять (также оперативное запоминающее устройство, ОЗУ) — в информатике — память, это часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

В современных вычислительных устройствах, оперативная память выполнена по технологии динамической памяти с произвольным доступом (англ. dynamic random access memory, DRAM). Понятие памяти с произвольным доступом предполагает, что текущее обращение к памяти не учитывает порядок предыдущих операций и расположения данных в ней. ОЗУ может изготавливаться как отдельный блок, или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

Графическая плата

Графическая плата (известна также как графическая карта, видеокарта, видеоадаптер) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в специальный разъём (ISA, VLB, PCI, AGP, PCI-Express) для видеокарт на материнской плате, но бывает и встроенной, иначе говоря, интегрированной.

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера.

Устройство

Современная графическая плата состоит из следующих частей:

графический процессор (Graphics processing unit - графическое процессорное устройство) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его по числу транзисторов. Архитектура современного GPU обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

видеоконтроллер — отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

видеопамять — выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE.

цифро-аналоговый преобразователь (ЦАП, RAMDAC - Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн. цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн. цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд. цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.

видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Видеопамять

Кроме шины данных, второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth) памяти самого видеоадаптера. Причём, изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного "голода" видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC’а. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024x768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МиБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём, ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МиБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц, номинально потребная пропускная составляет уже 550 МиБ/с, для сравнения, процессор Pentium-2 имел пиковую скорость работы с памятью 528 МиБ/с. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниже.

FPM DRAM (Fast Page Mode Dynamic RAM - динамическое ОЗУ с быстрым страничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхронный доступ, при котором управляющие сигналы не привязаны жёстко к тактовой частоте системы. Активно применялся примерно до 1996 г.

VRAM (Video RAM — видео ОЗУ) — так называемая двухпортовая DRAM. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств, то есть есть возможность одновременно писать данные в какую-либо ячейку памяти, и одновременно с этим читать данные из какой-нибудь соседней ячейки. За счёт этого позволяет совмещать во времени вывод изображения на экран и его обработку в видеопамяти, что сокращает задержки при доступе и увеличивает скорость работы. То есть RAMDAC может свободно выводить на экран монитора раз за разом экранный буфер ничуть не мешая видеопроцессору осуществлять какие-либо манипуляции с данными. Но однако это всё та же DRAM и скорость у неё не слишком высокая.

WRAM (Window RAM) — вариант VRAM, с увеличенной на ~25 % пропускной способностью и поддержкой некоторых часто применяемых функций, таких как отрисовка шрифтов, перемещение блоков изображения и т. п. Применяется практически только на акселераторах фирмы Matrox и Number Nine, поскольку требует специальных методов доступа и обработки данных. Наличие всего одного производителя данного типа памяти (Samsung) сильно сократило возможности её использования. Видеоадаптеры, построенные с использованием данного типа памяти, не имеют тенденции к падению производительности при установке больших разрешений и частот обновления экрана, на однопортовой же памяти в таких случаях RAMDAC всё большее время занимает шину доступа к видеопамяти и производительность видеоадаптера может сильно упасть.

EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с расширенным временем удержания данных на выходе) — тип памяти с элементами конвейеризации, позволяющий несколько ускорить обмен блоками данных с видеопамятью приблизительно на 25 %.

SDRAM(Synchronous Dynamic RAM — синхронное динамическое ОЗУ) пришёл на замену EDO DRAM и других асинхронных однопортовых типов памяти. После того, как произведено первое чтение из памяти или первая запись в память, последующие операции чтения или записи происходят с нулевыми задержками. Этим достигается максимально возможная скорость чтения и записи данных.

DDR DRAM (Double Data Rate) — вариант SDRAM с передачей данных по двум срезам сигнала, получаем в результате удвоение скорости работы. Дальнейшее развитие пока происходит в виде очередного уплотнения числа пакетов в одном такте шины (DDR2, QDDR и т. п.)

SGRAM (Synchronous Graphics RAM — синхронное графическое ОЗУ) вариант DRAM с синхронным доступом. В принципе, работа SGRAM полностью аналогична SDRAM, но дополнительно поддерживаются ещё некоторые специфические функции, типа блоковой и масочной записи. В отличие от VRAM и WRAM, SGRAM является однопортовой, однако может открывать две страницы памяти как одну, эмулируя двухпортовость других типов видеопамяти.

MDRAM (Multibank DRAM — многобанковое ОЗУ) — вариант DRAM, разработанный фирмой MoSys, организованный в виде множества независимых банков объёмом по 32 КиБ каждый, работающих в конвейерном режиме.

RDRAM (RAMBus DRAM) память использующая специальный канал передачи данных (Rambus Channel), представляющий собой шину данных шириной в один байт. По этому каналу удаётся передавать информацию очень большими потоками, наивысшая скорость передачи данных для одного канала на сегодняшний момент составляет 1600 МиБ/с (частота 800 МГц, данные передаются по обоим срезам импульса). На один такой канал можно подключить несколько чипов памяти. Контроллер этой памяти работает с одним каналом Rambus, на одной микросхеме логики можно разместить четыре таких контроллера, значит теоретически можно поддерживать до 4 таких каналов, обеспечивая максимальную пропускную способность в 6,4 ГиБ/с. Минус этой памяти — нужно читать информацию большими блоками, иначе её производительность резко падает.

Поколения 3D-ускорителей

Поколения ускорителей в видеокартах можно считать по версии DirectX, которую они поддерживают. Различают следующие поколения:

DirectX 7 — карта не поддерживает шейдеры, все картинки рисуются наложением текстур;

DirectX 8 — поддержка пиксельных шейдеров версий 1.0, 1.1 и 1.2, в DX 8.1 ещё и версию 1.4, поддержка вершинных шейдеров версии 1.0;

DirectX 9 — поддержка пиксельных шейдеров версий 2.0, 2.0a и 2.0b, 3.0;

DirectX 10 — поддержка унифицированных шейдеров версии 4.0;

DirectX 10.1 — поддержка унифицированных шейдеров версии 4.1.

Также поколения ускорителей в видеокартах можно считать по версии OpenGL, которую они поддерживают:

OpenGL 1.0

OpenGL 1.2 OpenGL 1.4

OpenGL 2.0 OpenGL 2.1

OpenGL 3.0 Типы видеоадаптеров

Стандартные типы видеоадаптеров применяющихся на компьютерах, определяюшие такие характеристики как: разрешение, количество цветов, тип интерфейса с монитором и частота дискретизации. В настоящее время большинство видеоадаптеров основано на SVGA, но имеют собственные расширения для обработки 2D и 3D графики.

MDA (Monochrome Display Adapter) - простейший видеоадаптер, применявшийся в IBM PC. Его официальное имя - Monochrome Display.

Слово монохромный отражает самую важную характеристику MDA. Он был создан для работы с одноцветным дисплеем. Первоначально он работал с экранами зеленого цвета, которыми обеспечивались почти все системы IBM того времени.

Слова «адаптер дисплея» являются функциональным описанием. Это устройство преобразует сигналы, распространяющиеся по шине PC, к форме, воспринимаемой видеосистемой. Возможность подключения принтера к этому адаптеру является его достоинством, потому что позволяет подключить принтер без использования еще одного разъема расширения.

MDA является символьной системой, не обеспечивающей никакой другой графики, за исключением расширенного множества символов IBM. Это был первый адаптер IBM и до недавнего времени он был лучшим адаптером для обработки текстов, обеспечивающим самое четкое изображение символов, по сравнению с любыми дисплейными системами, выпущенными до PS/2.

Текстовый режим был целью разработки адаптера. Тогда IBM не могла вообразить, что кому-либо понадобится рисовать схемы на дисплее.

HGC (Hercules Graphics Card — графическая карта Hercules) — расширение MDA с монохромным графическим режимом 720x348 и поддержкой двух видео страниц, разработанное фирмой Hercules. Наличие двух видеостраниц до сих пор является стандартным для всех видеоадаптеров и активно используется в играх. Пока одна страница отображается на экране монитора, на другой, невидимой пользователю, странице происходит отрисовка изображения, потом они меняются. То есть пользователь видит только уже готовую картинку, весь процесс построения изображения от него скрыт.

Монитор

Монито́р, диспле́й — интерфейс системы «человек — аппаратура — человек». Преобразует цифровую и (или) аналоговую информацию в видеоизображение.

Классификация мониторов

1. По виду выводимой информации

• алфавитно-цифровые

• дисплеи, способные отображать только алфавитно-цифровую информацию

• дисплеи, способные отображать псевдографические символы

• интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных

• графические

• векторные

• растровые

2. По строению

• ЭЛТ — на основе электронно-лучевой трубки (англ. CRT — cathode ray tube)

• ЖК — жидкокристаллические мониторы (англ. LCD — liquid crystal display)

• Плазменный — на основе плазменной панели

• Проекционный — видеопроектор и экран размещённые отдельно или объединённые в одном корпусе (как вариант через зеркало или систему зеркал)

• OLED-монитор - Монитор, основанный на технологии OLED - Organic Light-Emitting Diode или Органический Светоизлучающий Диод

Основные производители:

Acer Inc. Apple Computer ASUS BenQ CTX Dell, Inc. Eizo iiyama Corporation LG Electronics NEC/Mitsubishi Philips Electronics Samsung Sony (выпуск мониторов прекращён) ViewSonic

Комплектация графической станции направленная на работу с допечатными процессами

Процессор:

Видеокарта:

HD 4870 X2: Частота GPU 750 МГц

Частота потоковых процессоров (АЛУ) 750 МГц

Частота памяти (физическая) 900 МГц (3600DDR)

Ширина шины памяти 2 x 256 битов

Тип памяти GDDR5

Объём памяти 2 x 1 Гбайт

Число потоковых процессоров (АЛУ) 1600

Число текстурных блоков 80

Число блоков растровых операций (ROP) 32

Производительность потоковых процессоров 2,4 TFlops

Пропускная способность памяти 115,2 Гбайт/с (x2)

Число транзисторов 2 x 956 млн.

Техпроцесс 55 нм

Площадь кристалла 2 x 260 мм²

Поколение 2008

Поддержка DirectX 10.1

ОЗУ: Монитор:

Видеоадаптер:

Заключение.

Графические станции - это высокоскоростные серверы, в которых стоят процессоры Dual-Core Intel® Xeon® Processor 5100 серии, а также снабженные внешней графической картой, в зависимости от задач устанавливаются или профессиональные ускорители для создания трех- или двухмерной графики, или мощные игровые графические карты. Так как при создании сложных графических моделей требуется большая скорость дисковой подсистемы, то раид-массивы в данной категории серверов ориентированы именно на быстроту чтения-записи. Для задач масштабов крупного предприятия, серверный отдел предоставляет модели серверов, снабженных четырьмя и более процессорами. Эти серверы имеют наивысшую степень защиты хранимой и обрабатываемой информации за счет дублирования всех основных агрегатов, а также наибольшую производительность.

Показать полностью…
Похожие документы в приложении