Всё для Учёбы — студенческий файлообменник
бесплатно
doc

Реферат «Принципы измерения цвета» по Печатному и послепечатному оборудованию (Игнатов А. П.)

Цвет служит средством общения. Цвет помогает торговать. Цвет — это сила, которая стимулирует продажи практически любого потребительского продукта. Профессионалы дизайна, графики и полиграфисты прекрасно знают, что цвет является ключевым фактором в процессе торговли, поскольку играет важную роль при принятии решения о покупке. Он пробуждает в покупателе целую вереницу эмоций, притягивающих его к тому или иному товару. Если правильно и эффективно использовать цвет в процессе производства и маркетинга того или иного продукта, то потенциальные покупатели смогут ощутить и осознать привнесенную в данный продукт добавочную стоимость.Чтобы использовать эффективно цвет, его обязательно нужно держать под строгим контролем. Процесс работы с цветом начинается с дизайнерской идеи и спецификации заказчика. С этого момента между многочисленными участниками производственного процесса возникает необходимость передавать цвета, и все они будут как-то интерпретировать эти цвета и воспроизводить их на самых разных устройствах. На каждом этапе производства выходные данные одного процесса становятся входными данными следующего. При каждом подобном обмене цвет попадает в новое цветовое пространство — с фотографической пленки на RGB-монитор, затем в CMYK-процесс для вывода на цветопробном устройстве и на типографской печатной машине. При этом результат каждого такого этапа оценивается различными людьми и в различных условиях просмотра. Так как же мы можем гарантировать, что наши первоначальные идеи и спецификации останутся в целости и сохранности на протяжении всего этого сложнейшего процесса? Если сказать кратко, то решением этой проблемы является измерение цвета. Если вы умеете измерять цвет, вы можете его контролировать.

Цвет и объекты, изучаемые теорией цвета.

Действие на органы зрения излучений, длины волн которых находятся в диапазоне 390-710 нм, приводит к возникновению зрительных ощущений. Эти ощущения различаются количественно и качественно. Их количественная характеристика называется светлотой, качественная – цветностью. Физические свойства излучения – мощность и длина волны тесно связаны со свойствами возбуждаемого им ощущения. С изменением мощности изменяетсясветлота, а с изменением дли волны цветность. Первоначальное представление о светлоте и цветности можно проиллюстрировать, поместив окрашенную поверхность частично на прямой солнечный свет, а частично - в тень. Обе части ее имеют одинаковую цветность, но разную светлоту.

Совокупность этих характеристик обозначается термином «цвет». По Шредингеру (1920 г.), цвет есть свойство спектральных составов излучений, не различаемых визуально. В связи с ролью цветовых ощущений в жизни и деятельности человекавозникла наука о цвете – теория цвета, или цветоведение. Она изучает круг вопросов, связанных с оптикой и физиологией зрения, психологией восприятия цвета, а также теоретические основы и технику измерения и воспроизведения цветов. Так как причиной возникновения цветового ощущения является действие света, то один из разделов теории цвета – физики цвета – рассматривает свойства света, главным образом распределение светового потока по спектрам испускания и отражения, а также способы получения этих спектров, аппаратуру и приемники излучения.Действие излучений на глаз, причины возникновения зрительного ощущения, зрительный аппарат и его работа – содержание части, называемой физиологией цвета.Соотношения между физическими характеристиками излучения и ощущениями, вызываемыми действиями излучений, - предмет психологии цвета.

Метрология цвета – раздел теории цвета, изучающий методы измерения цвета. Метрология устанавливает способы численного выражения цветов, основы их классификации, методы установления цветовых допусков. Закономерности, найденные физикой, физиологией, психологией и метрологией цвета, используются в теории воспроизведения цветного

объекта. Она служит основой техники получения цветных изображений в полиграфии, кинематографии и телевидении. Хотя теория цвета широко применяет достижения смежных областей знания, она пользуется собственными методами исследования, оригинальными и

специфичными и поэтому является самостоятельной наукой.

Необходимость измерения цвета

Цвет от светового источника оказывает существенное влияние на восприятие человеком цветовых нюансов. При неоновом освещении и при дневном свете один и тот же цвет воспринимается совершенно по-разному. Восприятие цвета также чисто субъективное. Одна и та же картина может быть воспринята каждым человеком неодинаково. Для того чтобы устранить эти влияния, в полиграфии применяют измерение цвета с помощью приборов, называемых денситометрами. Денситометр, это устройство, позволяющее измерять количественные значения параметров цвета и оттенков, структуры растра, а также параметров качества типографской печати.

Денситометрия применяется на всех этапах создания полноцветной полиграфической продукции:

Пробная печать. Сегодня в пробной печати и способах цветопробы достигаются достаточно высокие результаты. Это не означает, что тот же самый результат достигается при скоростной тиражной печати. Фотоформы, прошедшие проверку с помощью денситометра, в дальнейшем могут быть воспроизведены в печати без потери качества.

Сравнение оттисков пробной и тиражной печати может быть выполнено с помощью денситометров быстро и объективно.

Стандартизация печати. Часто различные типографии работают с одними и теми же фотоформами. Здесь особенно велика опасность нежелательных цветовых искажений. Решением проблемы является стандартизация печати с помощью денситометрии. Соблюдение стандартизации денситометрических данных повсеместно обеспечивает высокое качество печати.

Надежность печати тиража. При тиражной печати денситометры обеспечивают объективный контроль качества, что повышает надежность в работе и уменьшает потери от брака.

Контроль качества фотоматериалов. Денситометрами можно оценивать качество фотопленки, в целях обеспечения возможности высококачественной печати.

Основы денситометрии

Построение денситометров. Различают две основных категории денситометров:

Денситометры отраженного света. Измеряемый участок освещается источником света. Падающий свет прежде всего проходит через слой краски и ослабляется. Часть света проникает в бумагу и рассеивается там. Оставшийся свет, отражаясь от бумаги, проходит обратно через красочный слой, ослабляясь при этом, и достигает приемника.

Денситометры проходящего света. При этом методе измерения источник света просвечивает измеряемый участок. Световой поток проходит через краситель и основу. Краситель и основа поглощают часть света, остальная часть попадает на приемник.

Круговая оптическая система. Соблюдение высоких требований, предъявляемых к оптическим системам денситометров, обеспечивает точность измерения. Поэтому денситометры оснащены высококачественной круговой оптической системой. Круговая оптическая система учитывает весь световой поток, отраженный измеряемым образцом под определенным углом. Благодаря такой возможности, при неравномерности образца поворот его или денситометра не оказывает влияния на результат.

Плотность как логарифмическая величина. Оптическая плотность оригинала - это десятичный логарифм отношения количества света, падающего на оригинал, к количеству света, отраженного от оригинала или прошедшего через него, которое обозначается как β:

D = -log10β.

Это определение базируется на том, что человеческий глаз имеет приблизительно логарифмическую светочувствительность.

Величина βизменяется от 0 (свет не отражается) до 1 (весь свет отражается). Чем меньше величина β, тем больше плотность, так как плотность логарифмическая величина от β, то зависимость β - D нелинейная (рис. 2.6). Плотность - это характеристика оригинала.

Значение параметра, равное 2,8D (D - от Density), означает, что в данной точке оригинала отношение β приблизительно 630.

Цветовая плотность. Величина плотности D зависит от толщины красочного слоя и концентрации красителя. Чем толще красочный слой на бумаге, тем выше плотность (рис. 2.7).

Цветные фильтры и спектральная плотность. При измерении цветных образцов (например, голубого, пурпурного и желтого) при печати в денситометрах используются специальные фильтры, помещаемые на пути прохождения света в приборе. Фильтры выбирают таким образом, чтобы они были дополнительны к цвету измеряемой печатной краски. При использовании этого правила на приемник денситометра попадает только определенная часть спектра источника света. Этот метод гарантирует объективные показатели измерения величин оптической плотности. Для измерения плотности черного цвета применяется серый фильтр.

Шкалы контроля цвета. Контрольные шкалы необходимы в печати для объективной оценки цвета с помощью денситометров. На полиграфическом оттиске краски накладываются одна на другую и поэтому, как правило, не могут отдельно контролироваться. Однако подача каждой краски в печатной машине регулируется отдельно, поэтому для каждой краски необходимо свое значение плотности. С помощью необходимых контрольных шкал можно учесть все важнейшие параметры качества печати. Шкалы являются служебными символами и, как правило, печатаются вне формата издания там же, где размещены обрезные метки и метки совмещения цветов.

Спектрофотометрия: принципы и оборудование

Рассматривая вопрос измерения цвета, мы понимаем, что цвет — психофизическое ощущение, возникающее в мозге человека под воздействием цветового стимула. Однако психофизическое ощущение измерению не поддается.

Понимая под цветовым стимулом лучистую энергию, проникающую в глаз, следует отметить, что эта энергия определяется физическими свойствами образца и источника освещения. Образец обладает свойством пропускать или отражать падающий на него свет в разных точках спектра по-разному. На этом основан принцип работы спектрофотометра. С помощью встроенного в прибор источника света образец освещается; свет, отраженный от образца либо пропущенный через него, анализируется таким образом, что определяется отношение отраженного от образца или пропущенного через образец светового потока к падающему потоку во многих точках спектра. Т. е. мы получаем на выходе спектральный коэффициент отражения или пропускания, выраженный в процентах.

Однако, кроме спектральной кривой, любой спектрофотометр может представить измеренные данные в колориметрических координатах цвета, например в XYZ или CIE L*a*b*. Координаты цвета получаются расчетным путем из спектрального коэффициента отражения (пропускания), спектрального распределения энергии источника освещения и кривых сложения стандартного наблюдателя (отражающих свойства рецепторов человеческого глаза). По этой причине для измерения цветовых координат спектрофотометром необходимо также указать источник освещения (D50, D65, A, F11 и т. д.) и угол наблюдения (2 или 10 градусов). Цветовое различие между двумя образцами традиционно определяется как расстояние между их цветовыми координатами в цветовом пространстве CIE L*a*b*.

Основные понятия и определения

Как уже упоминалось, способ измерения цвета спектрофотометром связан с разложением лучистого потока, направленного от объекта к глазу на спектральные составляющие и измерением каждого компонента в отдельности.

Спектральный коэффициент пропускания определяется отношением пропущенного лучистого потока к падающему потоку в выбранном узком спектральном интервале.

Спектральный апертурный коэффициент отражения определяется отношением лучистого потока, отраженного от объекта и отраженного от совершенного отражающего рассеивателя. (Далее в статье будет идти речь только о работе спектрофотометров на отражение.) Совершенный отражающий рассеиватель определяется как идеальный однородный рассеиватель с коэффициентом отражения, равным единице.

Модификации основных типов спектрофотометров

На практике в настоящее время используются только две геометрии измерения — 45/0 и D/0. Остановимся на них подробнее.

Спектрофотометры с геометрией 45/0 относятся к классу недорогого портативного оборудования и успешно используются технологами для контроля цвета, измерения тестовых шкал для построения ICC профилей и выполнения других задач. Первые спектрофотометры с такой геометрией имели один источник света, потом появились приборы с двумя источниками, расположенными симметрично относительно нормали. Однако было замечено, что при освещении образцов с разных сторон измерения цвета могут иметь существенные различия. Для усреднения этих различий стали использоваться спектрофотометры с круговым освещением образца с помощью источника в виде кольца. Встречающаяся аббревиатура этой геометрии измерения — 45/0:с. При всех своих достоинствах такие приборы имеют существенные ограничения в использовании: ими нельзя измерять металлизированные материалы, которые зеркально отражают свет, попавший на них. Очевидно, что то же самое касается высокоглянцевых материалов — чем выше глянец образца, тем выше погрешность измерения.

Эти ограничения снимаются при использовании спектрофотометров с геометрией D/0, поскольку образец освещается диффузно. Тем не менее, для возможности исключения зеркальной составляющей высокоглянцевых материалов приемник света размещается под углом 8° к нормали, а напротив него симметрично относительно нормали устанавливается ловушка блеска, которая может обеспечить включение или исключение соответствующего фактора. Считается, что зеркальная составляющая коэффициента отражения возникает в результате отражения света глянцевой поверхностью. Свет, который не попадает на образец под углом 8° (благодаря ловушке блеска), не отражается зеркально в направлении приемника, следовательно, отраженный образцом поток состоит только из диффузного света. В таком случае геометрия измерения становится D/8, а не D/0, а наличие или отсутствие зеркального компонента может обозначаться как D/8:i (ловушка закрыта, зеркальный компонент включен) и D/8:e (ловушка открыта, зеркальный компонент исключен). Интегрирующая сфера обычно покрывается сульфатом бария, хотя могут использоваться и другие материалы. Очевидно сходство материалов покрытия сферы с белыми стандартами, использующимися для калибровки спектрофотометра. Чтобы на образец не попал свет, излучаемый источником, между ним и образцом помещается небольшой экран, иначе освещение образца не будет являться диффузным. Большинство этих дорогих высококлассных приборов не относятся к числу портативных, наиболее распространенный диаметр сферы — 150 мм, хотя существуют и переносные сферические спектрофотометры со сферами диаметром 50 мм.

Двухлучевой спектрофотометр

Стабильность работы сферического спектрофотометра зависит от многих факторов. Изменение интенсивности источника освещения, дрейф электроники, старение покрытия интегрирующей сферы снижают точность работы прибора. Обойти эти проблемы позволяет двухлучевая конструкция спектрофотометра. Принцип его работы состоит в том, что одновременно измеряется свет, падающий на образец и отраженный от него. Т. е. прибор калибруется во время каждого измерения. Это позволяет добиться прекрасной стабильности в работе и согласованности нескольких приборов этого типа.

Источники света в спектрофотометрах

Принцип работы спектрофотометра подразумевает независимость измерений от типа источника света в приборе, поскольку мы измеряем отношение отраженного (пропущенного) света к падающему на образец. В настоящее время широко используются два источника света в спектрофотометрах: кварцевая галогеновая лампа и импульсная ксеноновая лампа. Современные спектрофотометры все чаще оснащаются ксеноновыми импульсными лампами. Спектральное распределение таких ламп легко отфильтровать для воспроизведения D65, в то время как галогеновые лампы производят излучение, близкое к источнику А. Это означает, что галогеновые лампы имеют недостаточное излучение в УФ-области, что не позволяет правильно оценить цвет материалов с флуоресцентными отбеливающими добавками. Такие вещества поглощают энергию в УФ-области и излучают ее в синей области видимого спектра, что компенсирует естественную желтизну материала. Измерить цвет флуоресцирующего материала можно, освещая образец светом, имитирующим D65, имеющим достаточную УФ-составляющую излучения. Очевидно, что оценить присутствие и влияние отбеливающих добавок можно, сравнивая спектральные кривые отражения образца, освещенного ксеноновой лампой за УФ-фильтром, отсекающим УФ-излучение и без него.

Таким образом, можно сделать вывод, что при выборе спектрофотометра следует учитывать оптические свойства материалов, подлежащих измерению и, в соответствии с ними, использовать прибор с определенной геометрией излучения и источником света.

Принципы измерения цвета.

В основе любой точной науки лежат измерения, потому что, раскрывая связи между явлениями, она, прежде всего, рассматривает количественные ихсоотношения.Экспериментальная проверка любого вывода требует проведение измерений. Учение об измерении цвета называется метрологией цвета или колориметрией.Колориметрия использует два способа количественного описания цветов. 1) Определение их цветовых координат и тем самым – строгих численных

характеристик, по которым их можно не только описать, но и воспроизвести.Системы измерения цвета называются колориметрическими. 2) Нахождение внекотором наборе эталонных цветов образца, тождественного данному.Совокупность образцов составляет систему, называемую системой спецификации.

Законы Грассмана.

Если на глаз действует смесь излучений, то реакции рецепторов на каждое из них складываются. Смешение окрашенных световых пучков даёт пучок нового цвета. Получение заданного цвета называется его синтезом. Законы синтеза цвета сформулировал Г. Грасман (1853 г.). Первый закон Грасмана (трехмерности). Любой цвет однозначно выражается

тремя, если они линейно независимы.Линейная независимость заключается в том, что нельзя получить никакой из указанных трех цветов сложением двух остиальных. Закон утверждает

возможность описания цвета с помощью цветовых уравнений. Второй закон Грасмана (непрерывности). При непрерывном изменении излучения цвет изменяется также непрерывно.

Не существует такого цвета, к которому невозможно было бы подобратьбесконечно близкий. Третий закон Грасмана (аддитивности). Цвет смеси излучений зависит только от их цветов, но не от спектрального состава. Из этого закона следует факт, имеющий первостепенное значение длятеории цвета, - аддитивность цветовых уравнений: если цвета нескольких уравнений описаны цветовыми уравнениями, то цвет выражается суммой этих уравнений.

Колориметрические системы.

Результаты любых измерений должны быть однозначны и сопоставимыми. Это– одно из основных требований метрологии. Для его существования необходимо, чтобы условия измерения, от которых зависят их результаты, были постоянными, принятыми за норму. Совокупность нормированных условий измерения цвета составляет колориметрическую систему. Нормируют цветности основных, уровень яркости, единицы количеств основных, размеры фотометрического поля – все эти факторы определяют значения цветовых координат измеряемого цвета. В основе любой колориметрической системы находятся цветности цветов

триады, так как от них результаты измерений зависят в особенно большой степени. Основные излучения выбираются так, чтобы они в соответствии с первым законом Грасмана были линейно независимы. Этому требованию отвечают излучения синего, зеленого и красного цветов. Тройка линейно независимых цветов называется триадой. Для измерения цвета можно воспользоваться разными триадами: основные могут занимать разные спектральные интервалы и участки спектра. Однако практически их число ограничено.. Это связано с тем, что колориметрия предъявляет к основным не только требование линейной зависимости, но и другие. Среди них – возможность легкого и точного осуществления основных и также возможно большая насыщенность воспроизводимых цветов. Как известно из изложенного выше, с уровнем яркости объекта связана контрастная чувствительность глаза. Поэтому два участка разных цветов, различаемые при одной яркости, могут оказаться, неразличимы при другой, когда чувствительности глаза понижается. Следовательно, условия колориметрических измерений целесообразно нормировать так, что уровень яркости поля был оптимальным в отношении чувствительности глаза.

Система RGB.

Предлагались разные триады основных. Их цвета должны удовлетворять законам синтеза, но и хорошо воспроизводиться. Когда создавались колориметрические системы, лазер не был еще изобретён, и наиболее воспроизводимыми считались излучения от газосветных ламп, из которых с помощью светофильтра можно выделить монохроматические строго определенных длин волн. В 1931 г. на VIII сессии Международного комитета по освещению (МКО) за основные были приняты цвета следующих излучений красное (R =700 нм, легко выделяется с помощью «крутого» красного светофильтр из спектра обычной лампы накаливания; зеленое (G =546,1 нм, присутствует в спектре ртути синее (B =700 нм, также присутствует в спектре ртути; Цвета этих излучений получили название цветов R, G, B, а колориметрическая система, использующая их в качестве основных RG B. Цвет Ц в системе RG B представляется как сумма основных умноженных на координаты цвета:

Ц = rR + gG + bB Одновременно с этой системой была принята другая система – XYZ, основные цвета которой выбраны более насыщенными. Система RG B всовременной колориметрии почти не используется.

Система XYZ.

Одновременно с триадой RGB была принята другая тройка основных. Ее составили воображаемые цвета, более насыщенные, чем спектральные.Поскольку таких цветов в природе нет, их обозначили символами неизвестных величин X, Y, Z. Основанная на их применении колориметрическая системаполучила название XYZ.Одна из причин, побудивших ввести воображаемые сверхнасыщенные цвета,состоит в стремлении избавиться от отрицательных цветовых координат, неизбежных в случае реальных цветов. А главное, система разработана так,что ряд колориметрических расчетов упрощается. Основные цвета XYZ описываются в системе RGB следующими уравнениями:

X = 0,4185R – 0,0912G + 0,0009B

Y = - 0,1588R + 0,2524G – 0,0025B

Z = - 0,0829R + 0,0157G + 0,1786B

Геометрия измерения

Геометрия измерения определяет, каким образом образец освещается и наблюдается. Международной комиссией по освещению рекомендованы четыре различные геометрии:

1. 45/0. Образец освещается одним или несколькими световыми пучками, оси которых составляют угол 45±5° относительно нормали к поверхности образца. Угол между направлением наблюдения и нормалью к образцу не должен превышать 10°. Угол между осью освещающего пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

2. 0/45. Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Образец наблюдается под углом 45±5° относительно нормали. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Те же ограничения должны быть соблюдены и для наблюдаемого пучка.

3. D/0. Образец освещается диффузно с помощью интегрирующей сферы. Угол между нормалью к образцу и осью пучка наблюдения не должен превышать 10°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы. Угол между осью наблюдаемого пучка и любым его лучом не должен превышать 5°.

4. 0/D. Образец освещается световым пучком, ось которого составляет с нормалью к образцу угол не более 10°. Отраженный поток собирается с помощью интегрирующей сферы. Угол между осью освещаемого пучка и любым его лучом не должен превышать 5°. Интегрирующая сфера может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10 % внутренней отражающей поверхности сферы.

Цветовое пространство CIELab

Цветовое пространство CIELab завоёвывает популярность и широко применяется на всех этапах полиграфического цикла – от допечатной подготовки до тиража; поддерживается пакетами Photoshop и QuarkXPress. Цветовое пространство CIELab лежит в основе управления цветом с помощью ICC-профилей. Именно оно позволяет измерять цвет на множестве материалов, встречающихся в современном производстве: не только на плёнке, печатных формах и оттисках, но и струйной цветопробе, ЖК- и ЭЛТ-мониторах. Параметры плотности описаны Американским национальным институтом стандартов . Цветовое пространство CIELab разработано Международной комиссией по свету и значительно упрощает обмен информацией о цвете. С её появлением стало возможным обсуждать цвет на языке чисел, не прибегая к фразам типа «Слишком много голубого» или «У этого оттиска явный пурпурный оттенок». Поскольку система CIELab является международным стандартом, в любом месте планеты координаты будут означать один и тот же цвет. Из всех стандартных цветовых пространств, утверждённых комитетом CIE, наиболее широкое распространение получил именно CIELab. В системе CIELab каждый цвет описан тремя числами, обозначающими его положение в трёхмерном пространстве. Первое число, или величина L, указывает на уровень яркости цвета. Значения «a» и «b» определяют собственно оттенок. CIELab 50, 75, 5 – это красный цвет, а CIELab 50, -75, 5 – зелёный. Жёлтый оттенок, вероятнее всего, будет складываться из значений CIELab 70, 0, 80. Два образца одинакового цвета, отличающиеся только уровнем яркости, выглядят как 50, 50, 50 и 70, 50, 50. Одно из основных различий системы CIELab и денситометрии – первая удивительно согласуется с биологическим механизмом восприятия цвета, а потому лучше справляется с оценкой печатных оттисков. Результаты измерения оптической плотности могут отличаться в зависимости от оцениваемого цвета.

Заключение

Внедрение новых технологий и современных методов в полиграфии (цифровые камеры, экранная и струйная цветопроба) означает, что печатникам необходимы новые способы измерения и контроля цвета. Всё чаще возникают ситуации, когда помимо денситометрии требуются более надёжные и визуально точные методики. Качество и доступность современных измерительных приборов открывают как никогда ранее широкие возможности внедрения системы CIELab для контроля цвета в цифровой печати.

Используемая Литература:

1.Ж. Агостон «Теория цвета и её применение в дизайне» М. «Мир» 1982 г.

2.Б. А. Шашлов «Цвет и цветовоспроизведение» М. «Книга» 1986 г.

3.Гуревич М. М., Цвет и его измерение, М. - Л., 1950;

4Нюберг Н. Д., Измерение цвета и цветовые стандарты, М., 1933;

Показать полностью…
Похожие документы в приложении