Всё для Учёбы — студенческий файлообменник
1 монета
doc

Шпаргалка «Экзаменационная» по Физике (Садыков Б. С.)

Электростатика.

Способность к электриза-ции. - способность тел притягивать к себе предме-ты.

Эти тела оказ. заряженными.

Q=ne Q - заряд тела n=1,2,...

Заряды приобретаемые при электризации всегда кратны е и заряды явл. дискретными.

Сущ. три способа электриза-ции тел.

1) Электризация через трение - трибоэлектризаия.

2) Электризация наведением (явление электростатиче-ской индукции).

3)Электризация с помощью электритирования.

Электрическ. заряды сохр. на заряженных телах различное время в зависемо-сти от способа электризации в1) и 2) - короткое время , 3) - годы и десятки лет.

В замкгутой системе электриз тел (нет обмена зарядами с внешними телами) алгебраическая сумма эл. зарядов остается постояной при любых процессах происходящих в этой системе.

Qi=const

i Точечный заряд это физич. абстракция.

Точечным зарядом принято называть заряж. тело розмера которого малы по сравнению с расст. до точки исследования.

Одноименные заряды отталкиваются, разноимен-ные притягиваются.

Зак. Куллона.

Сила взаимодействия междуточечными непо-движ зарядами

q1 и q2 прямопропорциа-нальны величине этих зарядов и обратнопропорц. расст. между ними.

F=k((q1q2)/r2

k=1/40 0=8,8510-12 Ф/M

0 - фундоментальная газовая постоянная назв газовой постоянной.

k=9109 M/Ф Зак. Куллона (в другом виде)

F=(1/40)q1q2r2

вакуум =1

F=(1/40)q1q2r2

для среды 1

Если точечн. заряд поме-ститьв однородн. безгра-нич.среду куллоновская сила уменьшится в раз по сравнению с вакуумом. - диэлектр. проницаемость среды.

У любой среды кроме вакуума >1.

Зак. Куллона в векторной форме.

Для этого воспользуемся единичным ортом по направ-лению вдоль расстояния между двумя зарядами.

_ _ _ _ er=r/r r =err

_ _

F=(1/40)q1q2r)r3 векторная форма

В Си - сист единица заряда 1Кл=1Ас

1Куллон - это заряд, протекаемый за 1 с через все поперечное сечение проводника, по которому течет

то А с силой 1А.

Зак.Куллона может быть применен для тел значи-тельных размеров если их разбить

на точечные заряды.

Кулл. силы - центральные, т.е.

они направлены по линии соед.

центр зарядов.

Зак. Куллона справедлив для очень больших расстояний до десятков километров. При уменьш. расст. до 10-15 м справедлив, при меньших несправедлив.

Электростатич. поле.

Хар. электростатич.поля.

_ _ (Е, D,)

В пространстве вокруг эл. зарядов возникает электро-статическое поле (заряды не подвиж.).

Принято считать, что электростатическое поле является объективной реальностью. Обнаружить поле можно с помощью пробных электрических зарядов.

Пробн., полож., точечный заряд должен быть таким, чтобы он не искажал картины иследуемого поля.

Напр. электростатич. поля.

_ Е - напряженность электро-статического поля. Напря-женность электростатиче-ского поля является силовой характеристикой.

_ Напр. поля в данной

Е=F/q0 точке простран-ства

явл. физ. вел. численно равная силе (куллоновск.)

действ. в данной точке на единичный неподвижный пробный заряд.

[E]=H/Кл [E]=В/м

Силовая линия - линия, в каждой точке которой напр. поля Е направлена по касательной.

Силовые линии строят с опред.

густотой соответствующей модулю напр. поля: через площадку 1 м2 проводят количество линий Е равное модулю Е.

При графическом представ-лении видно, что в местах с более

густым располож. Е напр. больше.

Вывод формул для напр. поля точечн. заряда.

q - заряд создающий поле.

q0 - пробн. заряд.

Е=(1/40)qq0)/(r2q0)

E=(1/40)q/r2

Из E=(1/40)q/r2 следует что Е зависет прямопропор-цианально величине заряда и обратнопропорц. расст. от заряда до т. исследов.

В однородн. безгр. среде с 1

(>1) напр. поля уменьш. в  раз.

E=(1/40)q/r2

_ E=(1/40)q2/r3

Электрическое смеще-ние.

_

Опред. формулой для D явл. следущее в данной т. среды электрическое смещение численно равно произвед. диэлектр. проницаемости, эл. постоянн. и напр. поля.

_

DE D=0E

[D]=Кл/м2 Напр. эл. поля завсет от среды поэтому при наличии несколбких граничащих диэлектриков на границе разрыва двух сред напр. поля меняется скачком (линии

_

вектора Е терпят разрыв).

_ Вектор D не завис. от  среды т.е. явл. однаков. по величине

_

во всех средах т.е. скачка D нет , разрыва нет.

_

Покажем что D независ от .

D=0(kq)/(0r2)

D=(1/4)q/(r2)

Потенцеал поля.

Силы электростатич. поля консервативные т.е. независ. от траэктории движения заряда.

_ F=- gradП Fx= -П/x аналогич Fy и Fz

1) F= - dП/dr Для электростатич. сил F=f(r).

Воспользуемся этой зависе-мостью для введения третей характеристики поля - потенцеала.

Преобр. 1)

2) dП= - Fdr F - кулло-новская сила взаимодей-ствия между двумя точечн. зарядами q и q0.

F=k(qq0/r2) Подставим F в 2) и проинтегрируем лев. и прав. часть.

3) dП= -k(qq0/r2)dr из 3)

П= -kqq0dr/r2=

=kqq01/r)+C

Разделим лев. и прав. часть 4) на q0.

5)=П/q0=(1/40 )q/r)+C

6) =П/q0 Потенцеал поля в данной точке численно равен потенцеальной энерии пробного заряда помещенно-го в данную точку.

[]=B=Дж/К

7) =(1/40 )q/r) при =0 rd при r=const ,

1/r при q=const

При q>0 >0 +

При q, p=q, =1 , r=OC

E - ? _ E=2Пр.Е+

Е+=Е_ в силу симметрии зар.

Е+=Е_=k(q/(r)2)

E+/E_=cos= /2r

Пр.Е+=Пр.Е_=Е( /2)

E=2Пр.Е+=2Пр.Е

Пр.Е+=Е+сos=(kq/(r)2)

/2r



Пр.Е+/E+=cos E+

rr при r>>

E=2(kq/(r)2)=kq /(r)3=

=kp/r3 (неправильно)

E=k(p/r3) _ _

Потоки D и Е.

Пусть электростатическое поле будет однородно т.е. такое

_

поле у котор. D=const и все линии поля по направле-нию , введ. в это поле плоск. поверхность площадью S, строем нормаль.

_ Пр.D=Dncos



поток D D=DcosS

1) D=Dncos

_ _

Потоком D или E назв. физ. вел. числ. = кол - ву. линий

_ _

D или Е пронизывающих исследуемую поверхность при

_ _

условии D или Е поверхности.

Е=ЕnS 2)

[D]=Кл [Е]=Вм

Поток характеристика скалярная, алгебраическая.

При 0 При R (вне шара)

2) rER (скачок)

вн сн вн сн

Завис. Е(r)

При срR, то внутрь поверхности попада-ет

весь заряд и по теор. Гаусса

4r2E=Q/0 , откуда

E=(1/40)Q/r2 (r R)

Если r0 - исток расхождения. Если 0 ж>1

Из 2) ж -const

Покажем что вектор поляризации равен (для точек взятых внутри диэлек-трика).

Ю= '

Пусть во внеш. поле Е0 нах. массивный образец.

V=S

Независимо от способа поляриз. справа будет +' , справа -'.

_ Pi =q=S'=

i Ю='S/S ='

Эл. поле внутри диэлек-трика.

Вектор эл. смещения.

Рассм. поляризацию одно-родного , изотропного диэлектрика (ж -const) внесенного во внеш. одно-родное поле поле Е0 образо-ванное плоским конденс.

На образце появятся поверхностные связанные заряды.

+' , -'. _

Связ заряды созд. поле Е'

_

напр противополож. Е0.

_ _ _

Е=Е0+Е' Е= Е0+Е'

Е=Е0 - '/0=E0 - ж0E/0

E+жE=E0 (1+ж)= E0

1+ж=

E=E0/ - напряженность поля в диэлектрике внесен-ного во внеш. поле Е0.

Напряженность поля в диэлектр. Уменьшется в  раз при условии что на обкладках конденс. остают-ся постоянными.

Если диэлектрик вносится в плоский конденс. подклю-ченный к источнику напря-жения , напряженность остается =Е0.

Е=Е0

0Е=0Е0 D0=0Е0

D=D0= В таком случае эл. смещение одинаково в вакууме и в диэл.

Лекция.

=const E=Е0/0

E созд. всеми видами зарядов как свободными так и связанными.

D = D0 диэл в возд

U=const

 =const

Е0=E

D=D0

Связь между связанными и свободными и свободными зарядами ( и' ).

Связь между и' уста-навл.на основании выраж. для напряж. поля.

Е= Е0 - Е'

Е0/=Е0 - Е'

/0=/0-'/0

/= -'

'=( - 1/)



Связь между Е , D , Ю.

_ _

D=0E=(1+ж)0E=

_ _

=0E+ж0E0 _ _

D=0E+Ю - связь

Теор. Гаусса при наличии диэлектриков.

Для воздуха и для вакуума две равные теор. Гаусса.

1) ѓDnds=qi S i

2) 0Ends=qi

i

1)=2) При наличии деэлектриков значимость 1) и 2) различна. В формуле 2) при наличии диэлектрика в прав. часть надо добавить алгебраич. сумму всех связанных зарядов 2)'0Ends=qi+

i

+qi'

i

Вел. связанных зарядов зависет от Еn.

Поток вектора эл. смещения сквозь произвол. замкн поверх. равен алгебраич. сумме всех свобод. зарядов заключ. внутри поверхности.

ѓDnds=qi - теор. Гаусса

S i при наличии диэлек-трика.

Явление на границе двух диэлектриков .

Граничные условия.

Закон преломления линий поля.

До сих пор мы рассм. диэл. вносимый в поле так что поверхность его совпадала с эквипотонц. поверх. , а линии

_ _

Е и D были поверхности.

_ _

Каково направление Е и D

_ _

если Е и D не эквипотонц. поверх.

Для построения картины поля внитри диэлектрика нужно знать граничные условия.

Граничные условия для нормальных составляю-щих

_ _

Е и D. Рассм. границу раздела двух диэлектриков.

Псть у 1) - 1

2) - 2 2 >1

Пусть на границе раздела

_

двух диэлектрикриков D направлен под углом .

_ _

Расскладываем D1 и D2 на состовляющие нормальную к поверхности и танген-циальную.

_ _ _

D1=D1n+D1 _ _ _

D2=D2n+D2 Для применен. Теор. Гаусса надо построить замен. поверх.

Нухно выбрать цилиндрич поверхн.

Найдем поток вектора эл. смещения через замкн. поверх.

ФD=D2nS - D1nS

Найдем алгебр. сумму зар. попавших внутрь.

D2nSD1nS=0

S0 1) D2n=D1n

Cогласно связи.

20E2n=10E1n

2) E1n/E2n =2/1

2) - втор. гранич. усл. показ. каково повидение Е на грпнице: En на границе раздела двух диэл. изменяет-ся скачком.

Граничные условия для тангенц. состовляющей.

Для получ. этих гранич. усл. воспольз. теор.о циркуляции вектора напряженности электрич поля.

ѓЕd=0 L

Нужно построить четеж для

_ Е аналогично рис 1.

_ _ _ _

(1) - Е1 Е1=E1n+E1

_ _ _ _

(2) - Е2 Е2=E2n+E2

Для применения теор. о циркул. нужно выбрать замкн. контур. В качестве замкнутого контура выбира-ем прямоугольник стороны котор. границе раздела , высота h0.

АВ=CD=а Направление обхода по часовой стрелке.

ѓЕd=0 L=ABCD

L В каждой точке на расст AB E1  этому участку.

Поэтому циркуляция E1 на AB равна

B D

ѓЕd=E1d- E2d=0

L A C

E1a - E2a=0

a0 3) E1=E2

У вектора напряженности поля при переходе через границу раздела двух диэлектриков не меняется тангенциальная состовля-ющая.

D1/10=D2/20

Используя 3) и связь между

_ _ D и E получим:

4) D1/10=D2/20 - 4-ое условие .

На границе раздела двух диэлектриков тангенц.

_

сoставл. D изменися.

1,2,3,4 - условия позволяют правельно построить картину линий поля.

Закон преломления линий поля.

tg2=D2 /D2n td1=D1/D1n

tg2/tg1= D2D1n/ D2nD1= =D2 /D1=2/1

5) tg2/tg1=2/1 - зак. преломления линий поля.

Угол больше в той среде где  больше.

Из 5) следует гуще линии поля располож. В диэлектри-ке где  больше.

2r (источник тока разомкнут) R.

IV) =IR Э.Д.С.= напряже-нию на клемах разомкнутого тока.

Газовый разряд.

Ионизация. Рекомбинация газов.

Газы явл. диэлектрками , и в обычных условиях не проводят эл. ток.

Все газы сост. из нейтраль-ных атомов и малекул.

Если каким либо образом создать носители тока в газах , то они станут провод-никами.(ионизация).

: УФ , R - лучи ,  - изл. ,  частицы - внешние иониза-торы.

Ионизация - это превраще-ние нейтральных атомов и малекул в ионы.

Электроны в атомах удер-живаются силами кулло-новск. притяжения.

Для удаления электрона необходимо сообщить энергию равную или превы-шающую энергию его связи с ядром (инергия ионизации Ei).

Ei =от 5 до 20 эВ

Электрон и ион могут перемещаться под действ. эл. поля.

Свободн. электроны сталки-ваясь с нейтральными атомами может войти в его состав создавая отрица-тельный ион.

В результате ионизации возник. 3 вида носителей тока: +ион , -ион , электрон.

Возникают два направлен-ных друг к другу встречных потока образующие эл. ток.

Одновременно с ионизацией в газе происходит рекомби-нация газа заключающаяся в исчезновении носителей тока.

Под действием внешнего ионизатора мощностью n.

(показавает сколько элек-тронов образуется в 1 м3 за 1с.)

1) В нач. момент времени И>Р.

2) Спустя некоторое время И=Р n+=n_ устанавливается равновесие концетрации носителей тока n.

3) После выключения. Иb_ b=/E

Подвижность - это физ. вел. числ. = скор. упорядоч. движ. носителей тока под действием эл. поля единич-ной напряженности.

[b]=м2/(Вс)

1) j=en(b++b_ )E - зак. Ома.

Произведение равновесной концентрации на элемен-тар. заряд носителей тока на сумму подвижностей и на напр. эл. поля.

2) j=E

=en(b++b_ ) =1/

 - удельная проводимость

3) jн=enid

d - расст. между электрода-ми.

ni - мощность ионизатора.

Ударная ионизация.

Самостоятельный газовый разряд.

При больших напр. поля свобод. электроны ускоря-ются до таких энергий которых достаточно для электронным ударом.

В обл. 4 в нутри газа появл. собственный источник ионизации , ударной иониза-ции.

Число электронов резко возрастает.

Лавинообразный процесс.

В обл. 4 наличие внеш. ионизации необходимо для поддеожания заряда.

При дальнейшем увеличении напр. поля в обл. 5 энергию достаточную дляионизации получают ионы.

В обл. 5 разряд становится самостоятельным. при этом сила тока увелич. Практиче-ски без изменения Е.

Напряженность при котор. происпереход из несомост. В самост. разряд. разряд назв. напряжением зажигания или пробоя.

Типы самостоятельных газовых разрядов.

1) тлеющий

2) искровой

3) дуговой

4) коронный

(в Трафимовой)

Зак. Джоуля - Ленца в интегральной и диффер. форме.

На внеш. сопротивлении в любой электрической цепи выделяется кол - во тепло-ты.

1) Q=I2Rt

За время t при протекании силы тока при протекании силы тока в нем выделится кол-во теплоты Q. (инте-гральная форма)

Получим зак. в диффер. форме.

Для этого рассм. внутри проводника с сопр. R элементарный объем dV=dSd

dR= d/dS

Запишем вместо 1) кол-во теплоты выдел. в этом объеме за время dt.

2) dQ=j(dS)2(d/dS)dt

(dQ/dVdt)=j2

3)т=j2 j=E

т =2E2=(1/)2E2

3) т =E2

Работа и мощьность тока, КПД тока.

=А*/q A=q=It

полная мощность источника тока P=A*/t=I

P=I( IR+Ir)=I2R+I2r

P=Pполез+Pбезполезн

=Pполез/P

Основные положения КЭТ.

1) При кристаллизации металлов из расплава атомы их теряют электроны. При этом возникают полож. заряж. ионы и свободные электроны. Если кажд. атом теряет по эл-ну, то nат=nэл=(D/)·Na. Своб. эл-ны способны перемещаться по всему объёму металла.

2) Все метал-лы ения:

Vт=(8KT)/(m)105м/c. 4) Своб. эл-ны, сталкиваясь с ионами, расположенными в узлах решётки, отдают им свою кинет. энергию. Этим обусловлено сопротивление проводников.

5) При приложении внешн. эл. поля напряжённостью E на хаотич. тепл. движение эл-нов накладывается упорядоченное движение. При этом возникает эл. ток. V « VT

Оценим V по ф-ле j=qэлnV=enV

V=j/(en); n~1029м-3, j(Cu)=107А/м2

V~10-3м/с. Суммарн. скор.VVVT

Поскольку V « VT, то VVT

Закон Ома в КЭТ

Основные положения КЭТ позволяют вывести ф-лу закона Ома как ф-цию параметров носителей тока. Для вывода используем соотношение j=enV. Пусть к проводнику приложено внешнее поле E. Своб. эл-ны придут в движение. На эл-ны будет действ. сила со стороны поля F=eE.E=consta=const.

F=eE=ma (по II з-ну Ньют.). a=(eE)/m

Для равноуск. движ. Vt=V0+at

ср. длина своб. пробега l~d расст. между ионами; -время своб. пробега.

Скорость электрона

V=Vmax=a - до столкнове-ния с ионом

V0=0 - после столкновения с ионом

V(V0+Vmax)/2=Vmax/2=(a/2=(eE/2m;

lVlV;

VeE)/2m] · lV;

j=enV=[(e2nE)/2m]·lVз-н Ома в КЭТ

j=E ne2l) / (2mV)

Закон Джоуля-Ленца в КЭТ

Нагревание проводника, согласно КЭТ, объясняется столкновением электронов с ионами кристал. решётки. Рассчитаем кинет. энергию отдельного эл-наперед столкновением с ионом, полученную им за счёт поля: W1=(mV2max)/2.

За 1 сек. эл-н может испы-тывать Z соударений, где Z = 1/=V l. Если в 1 м3 число эл-нов = n, то кинет. энергия, переданная решётке всеми n эл-нами за Z столк-новений каждого из них W=nZW1=T.

T=[(mV2max)/2]·n·Z=[ne2l/2mV]E2

Затруднения КЭТ

1) Температурная зависи-мость проводников. Соглас-но экспер. данным сопр. металлов увелич. с темпера-турой по з-ну R=R0+T, где R0-сопр. при T=273K, град-1. Для ф-ла аналогична +T. Согл. опыта ~T. =2mVTl~VT. На осн. КЭТ след. T, т.е. теория расходится с опытом.

2) Теплоёмкость металлов и диэлектриков. Согл. опвтов атомная теплоёмк. металлов и диэл-ков одинакова (C=3R, где R-газовая постоянная). Это положение наз. з-н Дюлонга и Пти. Согл. КЭТ металл сост. из кристал. решётки и своб. эл-нов, а диэлектрик своб. эл-нов не имеет. Следует ожидать, что теплоёмк. металлов=т.ё. кристал. решётки+т.ё. своб. эл-нов (Cмет=R+3/2R=4,5R), чего нет на опыте.

Электронный газ, на самом деле подчиняется не класси-ческой статистике Макс-велла, а квантовой стати-стике. Затруднения устра-няются в квантовой теории проводимости. Несмотря на затруднения, КЭТ она проста и широко применяется при высоких темп-рах и малых концентрациях.

Электромагнетизм

Магн. поле. Движ. заряды в окруж. пространстве создают магн. поле, которое явл. одной из форм сущ. материи. В отличие от эл. статического поля, магнит-ное действует только на движ. заряды. Проводники с текущими по ним токами в окруж. пр-ве создают магн. поле. Принято различать макро- и микротоки. Макротоки-это токи, текущие по проводникам. В любом вещ-ве электроны движутся по круговым орбитам. Движение эл-нов в атоме по круговым орбитам тоже приводит к созданию магн. поля. Токи, создавае-мые в веществах движущи-мися эл-нами называют микротоками.

Гипотеза Ампера: в каждом вещ-ве за счёт движения электронов возникают микротоки.

Для исслед. магн. поля применяют магн. стрелки (опыт Эстерда). Магн. стрелка предст. собой магнит, одетый на остриё. При пропускании тока через проводник стрелка испыты-вает силовое воздействие (устанавливается перпенд. проводнику). 2й метод исслед. маг. поля - с помо-щью плоского контура с током. Форма контура не играет роли.

Необходимо, чтобы размер контура был настолько мал, чтобы не искажал исследуе-мое поле. Контуры, вноси-мые в магн. поле испытыва-ют ориентирующее действие со стороны этого поля. Рамки принято характеризовать положит. нормалью. Поло-жительной наз. нормаль, проведённую к центру проводника, удовлетворяю-щего правилу правого винта по напр. тока. На основании действия сил на рамку делают вывод: магнитное поле - силовое и его надо характеризовать опред. направлением. За напр. магн. поля принимают напр. полож. нормали в данном месте распол. контура с током.

Определение характери-стик маг. поля связано с определением поведения контура с током в поле. В однор. поле внесён контур тока таким образом, чтобы вдоль линий поля была направлена плоскость.

Пара сил создаёт вращаю-щий момент M. Опыт показывает, что вращ. момент зависит от некот. силовой хар-ки поля и от силы тока в рамке (M~B; |M|~|I|). Для всех рамок вводится хар-ка, связанная с размерами расок и силой тока, текущей в них. Pm - магнитный момент. Pm=I·S [А·м2]. Магн. момент явл. вектором. Pm=n·I·S, где n - орт полож. нормали, т.е. Pm || n. Опыт показ., что M=[Pm , B] - механический вращ. момент равен векторному произведению магнитного момента рамки на вектор индукции магн. поля. M=Pm·B·sin (=Pm^B). Из этой ф-лы видно, что M=max, если =90° (положение I на рис.) Mmax=Pm·B(1). M=0 при =0 (полож II). Полож. II соответствует устойчивому равновесию рамки.

Индукция магн. поля - основная силовая хар-ка этого поля. Согл. ф-лы (1) B=Mmax / Pm. Индукцией магн. поля в данной точке наз. физическая величина, численно равная макс. вращающему моменту, действующ. в данной точке на рамку с током, имеющую единичный магн. момент. [B]=Н/(А·м)=Тл (Тесла). Ин-ция магн. поля предст. собой хар-ку результирую-щего поля, созданного макро- и микротоками. Индукцию можно изобразить силовыми линиями (аналог напряжён. эл. стат. поля).

Напряжённость магн. поля

Использ. вектор B не всегда удобно, поскольку проявл. зависимость от свойств Среды. Вводится вспомогат. хар-ка, не завис. от свойств Среды - напряжённость магнитного поля H (аналог D в эл. статике). B=H, где -магн. проницаемость. Для вакуума =1. -магнитная постоянная. =4·107 Гн/м. [H]=А/м. Для вакуума H=B/. За ед. (А/м) напряж. магн. поля принимают напряж. такого поля, у которого индукция B=4·107Тл. H определяется только макротоками и не завис. от микротоков. Поскольку H - это вектор, для него принято строить линии напряжённости.

Вихревой характер маг. поля. В отличие от эл. стат. поля, маг. поле является вихревым: линии магн. поля всегда замкнуты, представ-ляют собой окружности (вихри), охватывающие проводники с током.

Магн. поле не явл. потенци-альным. Линии поля B строят согласно правилу правого винта. Векторы B и H направлены по касатель-ной в каждой точке линий.

Принцип суперпозиции

магнитных полей

Если в пр-ве имеется неск. проводников с токами, то в каждой точке пр-ва магн. поле создаётся каждым из проводников в отдельности независ. от наличия осталь-ных. Результир. поле в этой точке характеризуется векторами B и H. Bi и Hi - векторы, порождаемые i-ым проводникомс током.

B=Bi; H=Hi;

Закон Био-Савара-Лапласа

Осн. задача магнитостатики состоит в умении рассчит. хар-ки полей. Закон Б-С-Л с использованием принципа суперпозиции даёт простей-ший метод расчёта полей.

dB-индукция, созд. в точ. A.

dB=(·(I·dl·sin/r2) [1]

dH=(I·dl·sin/(4r2) [2]

Индукция магн. поля, созданная элементом проводника dl с током I в точке A на расстоянии r от dl пропорц. силе тока, dl, синусу угла между r и dl и обр. пропорцион. квадрату расстояния r.

___ ____ __

dB=(·(I·[dl,r] /r3)

Значение з-на Б-С-Л заклю-чается в том, что зная dH и dB от dl можно вычислить H и B проводника конеч. размеров разл. форм.

Применение з-на Б-С-Л

Поле прямого отрезка конечной длины с током.

·Гн/м, H?, B?

dH=I·dl·sinr2

По правилу прав. винта найдём направл. dH

____ ____

H=dH. Поскольку все dH напр. одинаково, можно записать H=dH. Перемен-ной интегрирования выби-раем угол .

rd/dl=sin dl=rdl/sin.

dH=I·r·d·sin/sin·4r2=

=I·d/4r

из треуг. DOA b/r=sin

r=b/sin. dH=I·sind/4b



H=I·sind/4b=



 

=I/4b sind=bcos|

 

4b(coscos) (2)

4b(coscos) (2’)

Поле прямого бескон. тока.

Для беск. тока 

В (2): coscos1-(-1)=2

H=I/2b; B=I/2b.

Поле кругового тока

H=dH; r=R; =90°

2R H=I·dl/4R2=I·2R/4R2=

0 =I/2R; B=I/2R (4)

Картина линий поля для кругового тока:

Поле подобно эл. статич. полю диполя. В связи с этим круговой ток пердст. собой магн. диполь. Покажем, что круг. ток может служить магн. диполем. Для этого в ф-ле (4) домножим числитель и знаменатель на R2.

B=·I·4R2/2RR2

R2=S; I·S=Pm

B=·Pm /2R3

Закон Ампера

На опыте устан., что на проводник с током в магн. поле действ. сила. Для прямолин. проводников длиной l: F=IBl·sin. При =90° F=IBl. Для проводни-ков сложной формы з-н Ампера запис. в дифференц. форме: dF=IBdl·sin;

___ ___ ___

dF=I[B,dl]-векторная форма.

____ ____

F=dF Взаимод. паралл. токов

Рассм. 2 проводника, расположенных паралл. друг к другу.

Будем считать, что 1 создаёт магн. поле, а 2 находится в поле 1-го. Тогда индукция маг. поля B1 в точках нахождения 2: B1=I1/2d.

F2=I2B1l2sin=I1I2l2/2d.

Можно аналог. рассм. силу F1, действующ. на проводник 1 со стороны поля тока I2. F1=F2, если l1=l2=l. Парал. токи притягиваются, антипарал. - отталкиваются.

При рассм. парал. проводни-ков вводят силу, действ. на единицу длины проводника:

fед.дл.=I1I2/2d. (1)

Эта ф-ла позвол. ввести единицу силы тока в СИ “1 Ампер”.

Опред. ед. силы тока-Ампер

Полагая, что I1=I2=I из (1) имеем: I2=fед.дл.·2d/= fед.дл.·d/·10-7. Берём d=1м, fед.дл.=2·10-7Н/м.

За единицу силы тока 1A приним. силу такого тока, который протекает по 2-м парал. проводникам, расп. на расст. 1 м в вакууме, вызывает силу взаимодей-ствия между ними, равную 2·10-7Н на кажд. ед. длины.

Сила Лоренца.

Эл. ток предст. собой упорядоченн. движение эл. зарядов. На токи в магн. поле действует сила Ампе-ра, т.е. со стор. магн. поля на кажд. носитель заряда действ. тоже сила. Эту силу наз. силой Лоренца.

____ ____

Fл=qVBsin; =B^V

___ _ ____

Fл=q[V,B] - в вект. форме.

На покоящеиеся заряды сила Лоренца не действ. На заряды, влетающие в поле паралл. линиям поля сила Лор. тоже не действ.

Если одноврем. действ. электр. и магн. поля, то справедлва ф-ла Лоренца

Показать полностью…
Похожие документы в приложении