Всё для Учёбы — студенческий файлообменник
2 монеты
docx

Шпаргалка «Экзаменационная» по Физике (Тронева М. А.)

1.Волновая природа света. Уравнение электромагнитных волн. Скорость распространения электромагнитных волн. Длина волны, частота.

Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих воли дает положение волнового фронта в следующий момент времени.Э лектромагнитными волнами называют возмущения электромагнитного поля (т.е. переменное электромагнитное поле), распространяющееся в пространстве. Основные характеристики этих волн: λ — длина волны, ν — частота, Т — период.

Фазовая скорость электромагнитных воли определяется выражением

где с = , и — соответственно электрическая и магнитная постоянные,  и  —соответственно электрическая и магнитная проницаемости среды.

монохроматические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями

где E0 и Н0 — соответственно амплитуды напряженностей электрического и магнитного полей волны,  — круговая частота волны, k=/v — волновое число,  — начальные фазы колебаний в точках с координатой х=0. Источником электромагнитных волн в действительности может быть любой электрический колебательный контур ила проводник, по которому течет переменный электрический ток, так как для возбуждения электромагнитных волн необходимо создать в пространстве переменное электрическое поле (ток смещения) или соответственно переменное магнитное поле.

Длина волны соответствует пространственому периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний T, поэтому

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой λ. λ = с/ν.(v-частота)

2.Свет и цвет. Видимый свет.Шкала электромагнитных волн (слева—направо): гамма-излучение, рентгеновское излучение, Ультрафиолет 380 - 3 нм, ≈380—760 нм видимый свет, 2 мм - 760 нм Инфракрасные,звуковые волны.

Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.

В физике свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов: частиц, обладающих определённой энергией и нулевой массой.

Одной из характеристик света является его цвет, который определяется длиной волны для монохроматического излучения, или суммарным спектром сложного излучения.

Скорость света в вакууме с ≈ 299 792 458 м/с Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного).

Глаз человека обладает наибольшей чувствительностью к желто-зеленому излучению с длиной волны около 555 нм.

Различают три зоны излучения: сине-фиолетовая (длина волн 400—490 нм), зеленая (длина 490—570 нм) и красная (длина 580—720 нм).

3.Основные законы геометрической оптики. Принцип Ферма.

Раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах, называется геометрической оптикой.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Принцип Ферма( принципом наименьшего времени): действительный путь распространения света (траектория светового луча) есть путь, для прохождения которого свету требуется минимальное время. Величина, равная произведению длине геометрического пути на показатель преломления среды называется оптической длиной пути.

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены.

Закон преломления. Полное внутреннее отражение.Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред. где n21 — относительный показатель преломления второй среды относительно первой.

При переходе света из оптически более плотной среды в оптически менее плотную n2 iпр весь падающий свет полностью отражается при углах падения в пределах от iпр до /2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Постоянную величину n называют

относительным показателем преломления второй среды

относительно первой.

Показатель преломления среды относительно вакуума

называют абсолютным показателем преломления.

Относительный показатель преломления

двух сред равен отношению их абсолютных показателей

преломления:

n = n2 / n1.

Лучом волны называется линия, направление которой совпадает с направлением потока энергии в этой волне в каждой её точке. Например, плоской волне соответствует пучок параллельных прямых лучей; сферической волне — радиально расходящийся пучок лучей.

5.Полное внутренне отражение света, его применение.

при углах падения в пределах от iпр до /2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Величина iпр задаётся условием siniпр = 1/n, где n — относительный ПП 1-й и 2-й среды. Значения n и, следовательно, iпр несколько отличаются для разных длин волн (частот) излучения .При П. в. о. электромагнитная энергия полностью (отсюда — "полное") возвращается в оптически более плотную (с большим ПП) среду. П. в. о. широко используется во многих оптических приборах и экспериментах при углах падения в пределах от iпр до /2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Предельный угол iпр определим из формулы при подстановке в нее i2=/2.

Тогда

Уравнение удовлетворяет значениям угла iпр при n2  n1. Следовательно, явление полного отражения имеет место только при падении света из среды оптически более плотной в среду оптически менее плотную.

Явление полного отражения используется в призмах полного отражения, в световодах (светопроводах), представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.

5.Тонкая линза. Построение изображение тонкой линзой.Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями ,преломляющими световые лучи, способные формировать оптические изображения предметов.. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.(построение)

Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью. Для всякой линзы существует точка, называемая оптическим центром линзы, лежащая на главной оптической оси и обладающая тем свойством, что лучи проходят сквозь нее не преломляясь. Выражение представляет собой формулу тонкой линзы. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутой — отрицательным.

Если а=, т. е. лучи падают на линзу параллельным пучком

фокусным расстоянием линзы, определяемым по формуле

оптической силой линзы . Ее единица — диоптрия (дптр). Диоптрия — оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = 1/м.

Плоскости, проходящие через фокусы линзы перпендикулярно ее главной оптической оси, называются фокальными плоскостями. В отличие от собирающей рассеивающая линза имеет мнимые фокусы.

Для примера приведены построения изображений в собирающей (рис. 236) и в рас-сеивающей (рис. 237) линзах: действительное (рис. 236, а) и мнимое (рис. 236, б) изображения — в собирающей линзе, мнимое — в рассеивающей.

6.Аберрация оптических приборов.

Общий критерий применимости геометрической оптики- d >>λ

Закон прямолинейного распространения света и другие законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны.

Сферическая аберрация,кома,дисторсия,хроматическая,хроматическая аберрация,атигматизм.

Сферическая абберация:

один из типов аберраций оптических систем; проявляется в несовпадении фокусов для лучей света, проходящих через осе-симметрическую оптическую систему (линзу, объектив) на разных расстояниях от оптической оси этой системы

Кома. Если через оптическую систему проходит широкий пучок от светящейся точки, расположенной не на оптической оси, то получаемое изображение этой точки будет в виде освещенного пятнышка, напоминающего кометный хвост.

Дисторсия(от лат. distorsio — искривление), погрешность изображения в оптических системах, при которой нарушается геометрическое подобие между объектом и его изображением.Д. возникает в результате того, что линейное увеличение разных частей изображения различно.

Хроматическая аберрация.

При падении на оптическую систему белого света отдельные составляющие его монохроматические лучи фокусируются в разных точках (наибольшее фокусное расстояние имеют красные лучи, наименьшее — фиолетовые), поэтому изображение размыто и по краям окрашено. Это явление называется хроматической аберрацией.

7. Основные фотометрические величины – световой поток, освещенность, сила света. Единицы измерения.

Фотометрия — раздел оптики, занимающийся вопросами измерения интенсивности света и его источников. В фотометрии используются следующие величины:

1) энергетические — характеризуют энергетические параметры оптического излучения безотносительно к его действию на приемники излучения;(поток излучения Фе,энергеическая светимость(излучаемость)

2) световые — характеризуют физиологические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.

Световой поток Ф определяется как мощность оптического излучения по вызываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувствительностью).

Единица светового потока — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равномерности поля излучения внутри телесного угла) (1 лм = 1 кд  ср).

Светимость R определяется соотношением

Единица светимости — люмен на метр в квадрате (лм/м2).

Яркость В светящейся поверхности в некотором направлении  есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:

Единица яркости — кандела на метр в квадрате (кд/м2).

Освещенность Е — величина, равная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:

Единила освещенности — люкс (лк): 1 лк — освещенность поверхности, на 1 м2 которой падает световой поток в 1 лм (1 лк= 1 лм/м2). Энергетическая сила света (сила излучения)

Единица энергетической силы света — ватт на стерадиан (Вт/ср).

8.Волновой цуг. Длина когерентности, время когерентности. Естественный свет и поляризованный свет. Степень поляризации света.

Прерывистое излучение света атомами в виде отдельных коротких импульсов называется волновым цугом. Средняя продолжительность одного цуга ког называется временем когерентности. Прибор обнаружит четкую интерференционную картину лишь тогда, когда время разрешения прибора значительно меньше времени когерентности накладыва-емых световых волн.

За это время(ког) волна распространяется в вакууме на расстояние lког =ског, называемое длиной когерентности( длиной цуга)

Корентность бывает временной,пространственной.(определяются степенью монохроматических волн).Длина пространственной корентности (Радиус когерентности)

где  — длина волны света,  — угловой размер источника.

Степенью поляризации называется величина

где Imax, и Imin — соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Imax=Imin и Р=0, для плоскополяризованного Imin =0 и Р=1.

Свет со всевозможными равновероятными ориентациями вектора Е (и, следовательно, Н) называется естественным.Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным.(векторы напряженностей электрического Е и магнитного Н полей волны) Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу,называется плоскополяризованным (линейно поляризованным).

9. Поляроиды и их применение. Закон Малюса. поляризационный светофильтр, один из основных типов оптических линейных Поляризаторов; представляет собой тонкую поляризационную плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками). Плёнки обладают линейным дихроизмом, т. е. неодинаково поглощают две линейно поляризованные перпендикулярно одна к другой составляющие падающего на них света.

Поляроиды применяются, например, для защиты от ослепляющего действия солнечных лучей и фар встречного автотранспорта. . На контрольных вышках аэропортов и на капитанских мостиках лайнеров в качестве стекол • большим успехом используются листы поляроида.

Одна специальная модификация поляроида, называемая круговым поляризатором, обладает необычным свойством — пропуская 40 % обычного прямого света, она полностью подавляет отраженный свет. Если такой лист установить перед экраном телевизора, то до зрителя дойдет 40% света от экрана, но любой даже очень яркий свет в комнате не будет отражаться от передней поверхности экрана, что обеспечивает четкое, не замытое посторонним светом яркое изображение.

Опыт с турмалином.две пластинки. Если на пути луча поставить вторую пластинку турмалина T2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла к между оптическими осями кристаллов по закону Малюса где Io и I-интенсивности света,падающего на второй кристалл и вышедший из него.

Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

10.Явлениедвойного лучепреломления Все прозрачные кристаллы обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 277). Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис. 278). Второй из этих лучей получилназваниенеобыкновенного, а первый — обыкновенного. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называется оптической осью кристалла. Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления. Очевидно, что при любом направлении обыкновенного луча колебания светового вектора перпендикулярны оптической оси кристалла, поэтому обыкновенный луч распространяется по всем направлениям с одинаковой скоростью и, следовательно, показатель преломления no для него есть величина постоянная. Для необыкновенного же луча угол между направлением колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с разными скоростями. Следовательно, показатель преломления пe необыкновенного луча является переменной величиной, зависящей от направления луча.

11. Эффект Керра. Вращение плоскости поляризации.

Эффект Керра — оптическая анизотропия веществ под действием электрического поля — объясняется различной поляризуемостью молекул жидкости по разным направлениям. Это явление практически безынерционно, т. е. время перехода вещества из изотропного состояния в анизотропное при включении поля (и обратно) составляет приблизительно 10–10 с. Поэтому ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах (звукозапись, воспроизводство звука, скоростная фото- и киносъемка, изучение скорости распространения света и т. д.), в оптической локации, в оптической телефонии и т. д.

Вращение плоскости поляризации:

Некоторые вещества (например, из твердых тел — кварц, сахар, киноварь, из жидкостей — водный раствор сахара, винная кислота, скипидар), называемые оптически активными, обладают способностью вращать плоскость поляризации.

Опыт показывает, что угол поворота плоскости поляризации для оптически активных кристаллов и чистых жидкостей: для оптически активных растворов: где d — расстояние, пройденное светом в оптически активном веществе, ([]) — так называемое удельное вращение, численно равное углу поворота плоскости поляризации света слоем оптически активного вещества единичной толщины (единичной концентрации — для растворов), С — массовая концентрация оптически активного вещества в растворе, кг/м3. Удельное вращение зависит от природы вещества, температуры и длины волны света в вакууме.

12. Явление интерференции света. Оптическая разность хода и разность фаз. Условия усиления и ослабления интенсивности света.При наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией света. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

 = L2 – L1 — разность оптических длин проходимых волнами путей — называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

то  = ±2т, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно,является условием интерференционного максимума.

Если оптическая разность хода то  = ±2(т+1), и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, является условием интерференционного минимума.

13. Интерференционный опыт Юнга. Ширина интерференционной полосы.В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2. Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос. Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S1 и S2, которые можно рассматривать в соответствии с принципом Гюйгенса как источники вторичных волн, освещались светом одного источника S. При симметричном расположении щелей вторичные волны, испускаемые источниками S1 и S2, находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r1 и r2. Следовательно, фазы колебаний, создаваемых волнами от источников S1 и S2 в точке P, вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S1 и S2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.

14Интерференция в тонких пленках.Полосы равного наклона. Условия максимумов интерференции.Применение интерференции света.

В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленка на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки.Пусть монохpоматическая волна падает на тонкую пpозpачную пленку, от котоpой она дважды отpажается : часть от веpхней повеpхности пленки, часть - от нижней ее повеpхности (а часть пpоходит чеpез пленку). Эти две отpаженные волны (а и b) (pис. 1.8) когеpентны и, накладываясь дpуг на дpуга, интеpфеpиpуют.

Одна волна (та, котоpая заходит в пленку) отстает от дpугой. Между волнами обpазуется pазность хода. Если эта pазность хода пеpеменная в пpостpанстве, то создаются условия для наблюдения полос интеpфеpенции. Интеpфеpенцию в тонких пленках можно наблюдать двумя способами. Один способ основан на том, что пленка имеет pазличную толщину в pазных местах, дpугой - на том, что свет может падать на пленку под pазными углами. Пеpвый способ дает так называемые полосы pавной толщины, втоpой - полосы pавного наклона.Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ,

где показатель преломления окружающей пленку среды принят равным 1, а член ± 0/2 обусловлен потерей полуволны при отражении света от границы раздела. Если п>n0, то потеря полуволны произойдет в точке О и вышеупомянутый член будет иметь знак минус; если же пn0),

В точке Р будет интерференционный максимум, если (см. (172.2))

(174.2)

и минимум, если (см. (172.3))

(174.3) Интерференция, как известно, наблюдается, только если удвоенная толщина пластинки меньше длины когерентности падающей волны.

Полосы равной толщины (интерференция от пластинки переменной толщины)

Полосы pавной толщины. Рассмотpим конкpетный пpимеp таких полос, возникающих на тонком клине (pис.1.9).

В pазных местах клина имеем pазличную pазность хода отpаженных лучей. Оптическая pазность хода опpеделяется следующей фоpмулой:

(1.20)

Рассмотpим случай ноpмального падения лучей на пленку. Кpоме того, учтем, что пpи отpажении света от оптически более плотной сpеды (т. е. от сpеды с большим показателем пpеломления) пpоисходит потеpя полуволны. Мы считаем, что у пленки показатель пpеломления больше, чем у воздуха, и потеpя полуволны пpоисходит на веpхней повеpхности пленки. В pезультате можно записать:

Кооpдината х связана с толщиной пленки h фоpмулой

Следовательно, кооpдинаты темных полос (минимумов) находятся из условия , m=1,2. В пpомежутках между темными полосами pасполагаются светлые (максимумы). На конце клина наблюдается минимум. Заметим, что полосы на клине отстоят дpуг от дpуга на pавных pасстояниях: Пpи наблюдении таких полос с помощью микpоскопа его нужно сфокусиpовать на пленке, т.е. полосы наблюдаются как бы на самой пленке. Каждая полоса следует за pавной толщиной пленки и поэтому называется полосой pавной толщины.

Полосы равного наклона (интерференция от плоскопараллельной пластинки).Ин-терференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона.Лучи 1' и 1", отразившиеся от верхней и нижней граней пластинки (рис. 250), параллельны друг другу, так как пластинка плоскопараллельна. Следовательно, интерферирующие лучи 1' и 1" «пересекаются» только в бесконечности, поэтому говорят, что полосы равного наклона локализованы в бесконечности. Для их наблюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы. Параллельные лучи 1' и 1" соберутся в фокусе F линзы (на рис. 250 ее оптическая ось параллельна лучам 1' и 1"), в эту же точку придут и другие лучи (на рис. 250 – луч 2), параллельные лучу 1, в результате чего увеличивается общая интенсивность. Лучи 3, наклоненные под другим углом, соберутся в другой точке Р фокальной плоскости линзы. Легко показать, что если оптическая ось линзы перпендикулярна поверхности пластинки, то полосы равного наклона будут иметь вид концентрических колец с центром в фокусе линзы.

Кольца Ньютона:

Кольца Ньютона, являющиеся классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны (рис. 252).Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падения света имеющие вид концентрических окружностей.В отраженном свете оптическая разность хода (с учетом потери полуволны при отражении)

где d—ширина зазора. Из рис. 252 следует, что , где R—радиус кривизны линзы, r — радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая, что d мало, получим d=r2/(2R). Следовательно,

Приравняв (174.4) к условиям максимума (172.2) и минимума (172.3), получим выражения для радиусов m-го светлого кольца и m-го темного кольца соответственно

- max, где - любое целое число, - длина волны.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

- min, где - любое целое число, - длина волны.

Для учета того, что в разных веществах скорость света различна, для определения положения min и max используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптическая разность хода.

- оптическая длина пути,

- оптическая разность хода.

система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску.просветление оптикиЯвление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло–воздух, сопровождается отражением 4% падающего потока (при показателе преломления стекла 1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.Для устранения указанных недостатков осуществляют так называемое просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух–пленка и пленка–стекло возникает интерференция когерентных лучей 1' и 2' (рис. 253). Толщину пленки d и показатели преломления стекла nс и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна (см. (172.3)). Расчет показывает, что амплитуды от-раженных лучей равны, если

где nd — оптическая толщина пленки. Обычно принимают m=0, тогда

Таким образом, если выполняется условие (175.1) и оптическая толщина пленки равна 0/4, то в результате интерференции наблюдается гашение отраженных лучей.

Taк как добиться одновременного гашения для всех длин воли невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны 00,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Применение интерференции света:Проверка качества обработки поверхностей.С помощью интерференции можно оценить качество обработки поверхности изделия с точностью до 1/10 длины волны, т. е. с точностью до 10-6 см. Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной. Тогда неровности поверхности размером до 10-6 см вызовут заметные искривления интерференционных полос, образующихся при отражении света от проверяемой поверхности и нижней грани эталонной пластины.Просветление оптикиТак как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.Для устранения указанных недостатков осуществляют так называемое просветление оптики.

Применение интерференции света:по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10–7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).Российский физик В. П. Линник (1889—1984) использовал принцип действия ин-терферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д.

16.Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейность распространения света.Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.Согласно принципу Гюйгенса — Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн.Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света.Метод зон Френеля:Принцип Гюйгенса — Френеля в рамках волновой теории должен был ответить на вопрос о прямолинейном распространении света.Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на /2Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на /2, то в точку М они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М

где А1, А2, ... — амплитуды колебаний, возбуждаемых 1-й, 2-й, ..., т-й зонами

Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами b + , b + 2 , b + 3 , ... .

Из рисунка следует, что

(177.2) После элементарных преобразований, учитывая, что 

Показать полностью…
Похожие документы в приложении