Всё для Учёбы — студенческий файлообменник
бесплатно
doc

Реферат «Софизмы» по Философии (Сухарев Ю. Н.)

В настоящее время уроки математики, на мой взгляд, в своем большинстве проходят сухо, однообразно и не всегда вызывают особого интереса у учащихся. Применение софизмов поможет исправить это, привить интерес к предмету, разнообразить урок.

Софи́зм (от греч. σόφισμα, «мастерство, умение, хитрая выдумка, уловка») — ложное умозаключение, которое, тем не менее, при поверхностном рассмотрении кажется правильным. Софизм основан на преднамеренном, сознательном нарушении правил логики.

История

Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажущаяся и обязана чисто субъективному впечатлению, вызванному недостаточностью логического или семантического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической. За счёт метафоричности речи, омонимии или полисемии слов, амфиболий и прочих, нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах (последнюю ошибку можно считать и семиотической, так как она связана с соглашением о «правильно построенных формулах») происходит нарушение правил логики.

Вот один из древних софизмов («рогатый»), приписываемый Эвбулиду: «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога». Здесь маскируется двусмысленность большей посылки. Если она мыслится универсальной: «Всё, что ты не терял…», то вывод логически безупречен, но неинтересен, поскольку очевидно, что большая посылка ложна; если же она мыслится частной, то заключение не следует логически. Последнее, однако, стало известно лишь после того, как Аристотель создал логику.

А вот современный софизм, обосновывающий, что с возрастом «годы жизни» не только кажутся, но и на самом деле короче: «Каждый год вашей жизни — это её 1/n часть, где n — число прожитых вами лет. Но n + 1>n. Следовательно, 1/(n + 1)1

Дана дробь: 1/Х. Как известно, она возрастает с уменьшением знаменателя

Поэтому, т.к. ряд 5, 3, 1, -1, -3, -5 убывающий, то ряд вида 1/Х=1/5, 1/3, 1, -1, -1/3, -1/5 и т.д. есть возрастающий. Но в возрастающем ряду каждый последующий член больше предыдущего, а это значит: 1/3>1/5, 1>1/3, -1>+1...

2=1 1)Х2-X2=X2-X2; (X+X)(X-X)=X(X-X); сокращаем: X+X=X; 2X=X; 2=1.

2) Х=1; X2=X; X2-1=X-1; X+1=1, но т.к. Х=1, то 2=1.

Парадоксы математические

Здесь мы поговорим о парадоксах в разделе математики. И вот, действительно, самое парадоксальное - это то, что в математике вообще есть парадоксы.

Парадокс несоизмеримости величин

Это явление имело место в древности, когда людям были знакомы только рациональные числа.

Две однородные величины, например, длины, площади или объемы, соизмеримы, если имеется их общая мера, т.е. если существует такая однородная с ними величина, которая укладывается в них целое число раз (общий делитель). Полагалось, что все вышеперечисленные величины соизмеримы.

Но вдруг оказалось, что диагональ квадрата и его сторона не имеют такой общей меры, и их частное нельзя было выразить с помощью известных чисел. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин может быть измерена и количественно точно определена, а их отношение - нет. К примеру, если возьмем сторону квадрата и начнем ее откладывать на диагонали, то обнаружим, что она укладывается только один раз и остается остаток. Тогда, если мы уложим остаток в сторону квадрата, то все будет ОК. Но и он не умещается. Далее полученный остаток не равный 2 не умещается в остаток не равный 1 и так далее.

В результате это отношение было выражено как корень квадратный из 2. Позднее нашли и другие несоизмеримые величины, такие как отношение длины окружности к диаметру и площади круга к площади квадрата, построенному на радиусе (оба равняются числу π).

Т.к. не находилось физического истолкования этих чисел, которое находилось для рациональных (самое банальное - две коровы, высота сооружения - тридцать три целых и половина камня), то греки придумали иррациональные, т.е. "бессмысленные", числа внедрить в геометрию, обозначать ими длины определенных отрезков, а не числа.

Парадокс бесконечно малых величин

Математический кризис в этой области существовал в период XVII - XVIII веков.

Бесконечно малые - это переменные величины, стремящиеся к нулю, или, если быть точнее, к пределу, равному нулю. Проблема состояла в их туманном понимании: то они рассматриваются как числа равные нулю, то как ему неравные. Причем, при таком подходе, люди рассматривали их как постоянные величины. Тогда из этого и из названия таких величин следует, что бесконечное является чем-то завершенным.

Кризис перестал быть таковым после создания теории пределов в начале XIX века французским математиком Огюстеном Луи Коши (1789 - 1857). С того момента бесконечно малые величины рассматриваются как постоянно изменяющиеся, а не постоянные, стремящиеся к пределу, но никогда его не достигающие. Постоянно изменяющиеся числа!

Парадокс Рассела

Парадокс связан с теорией множеств.

В письме от 16 июня 1902 года Готтлобу Фреге, уже завершавшему свой трехтомный труд, частью изданный, "Обоснования арифметики", венчавший усилия логицистов, Бертран Артур Уильям Рассел (1872 - 1970) сообщил о том, что обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента), указывая на противоречивость исходных позиций Фреге, тем самым чуть-чуть его обломав. Парадокс имеет n-ое количество вариаций.

Например, "каталог всех нормальных каталогов".

Каталоги подразделяются на два вида: 1) нормальные, которые в числе перечисленных в них каталогов не упоминают себя, и 2) ненормальные, которые входят в число перечисляемых ими каталогов.

Библиотекарю дается задание составить каталог всех нормальных каталогов и только нормальных каталогов. Должен ли он при составлении своего каталога его упомянуть? Если он его не упомянет, то составленный им каталог будет нормальным. Но такой каталог должен упомянут, а тогда это уже ненормальный каталог, и из списка должен быть вычеркнут. Библиотекарь не может ни упомянуть, ни не упомянуть свой каталог.

Теперь расскажем о вариациях этого парадокса. Начнем с более простого и известного.

Парадокс парикмахера (приписывается также Бертрану Расселу)

В некой деревни (некотором взводе и т.д.), в которой живет один-единственный парикмахер, был издан указ: "Парикмахер имеет право брить тех и только тех жителей деревни, которые не бреются сами". Может ли парикмахер брить самого себя?

Парадокс "мэр города"

Каждый мэр города живет или в своем городе, или вне его. Был выделен один специальный город, где бы жили мэры, не живущие в своих городах. Где должен жить мэр этого специального города?

Парадокс Кантора (1899)

Согласно одной из теорем немецкого математика Георга Кантора (1845 - 1918), развившего уже упомянутую теорию множеств, не существует самого мощного множества. Сие ввиду того, что для любого сколь угодно мощного множества можно указать еще более мощное. С другой стороны, интуитивно очевидно, что множество всех множеств должно быть самым мощным, ведь оно включает в себя все возможные множества.

Другими словами, пусть множество всех множеств M содержит в себе множество всех своих подмножеств (ведь оно же множество всех множеств). Если первое имеет мощность m, то мощность второго 2m, что больше m. Следовательно, множество M не содержит множество всех своих подмножеств, а, значит, не может быть множеством всех множеств.

Парадокс изобретателя

Начнем с одной из его математических интерпретаций:

Попробуем доказать методом математической индукции неравенство

База при n = 1 очевидна.

Предполагая, что для некоторого k наше неравенство верно, и начиная доказательство для k + 1, получим

и

Нам остается доказать, что

- тогда наше неравенство 100% истинно.

Возведем обе части неравенства в квадрат и, после алгебраических преобразований, получим

(k + 1) (2k + 1)2

Показать полностью…
Похожие документы в приложении