Всё для Учёбы — студенческий файлообменник
2 монеты
docx

Шпаргалка «Экзаменационная» по Эконометрике (Горбатков С. А.)

1. Основные понятия и особ-ти эконометрического метода

Эконометрика - это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенная для того, чтобы на базе экономической теории, экономической статистики, математико-статистического инструментария придавать конкретное количественное выражение общим закономерностям, обусловленным экономической теорией взаимосвязей экономических явлений и процессов.

Переменные, участвующие в эконометрической модели любого типа, разделяются на следующие типы:

Результирующая (зависимая, эндогенная) переменная Y

Она характеризует результат или эффективность функционирования экономической системы. Значения ее формируются в процессе и внутри функционирования этой системы под воздействием ряда других переменных и факторов, часть из которых поддается регистрации, управлению и планированию. В регрессионном анализе результирующая переменная играет роль функции, значение которой определяется значениями объясняющих переменных, выполняющих роль аргументов. По своей природе результирующая переменная всегда случайна (стохастична).

Объясняющие (экзогенные, независимые) переменные X

Это - переменные, которые поддаются регистрации и описывают условия функционирования реальной экономической системы. Они в значительной мере определяют значения результирующих переменных. Обычно часть из них поддается регулированию и управлению. Значение этих переменных могут задаваться вне анализируемой системы. Поэтому их называют экзогенными. Еще их называют факторными признаками. В регрессионном анализе это аргументы результирующей функции Y. По своей природе они могут быть как случайными, так и неслучайными.

Любая эконометрическая модель предназначена для объяснения значений текущих эндогенных переменных (одной или нескольких) в зависимости от значений заранее определенных переменных.

Переменные, выступающие в системе в роли факторов-аргументов, или объясняющих переменных называют предопределенными. Множество предопределенных переменных формируется из всех экзогенных переменных и так называемых лаговых эндогенных переменных, т. е. таких эндогенных переменных, значения которых входят в уравнения анализируемой эконометрической системы измеренными в прошлые моменты времени, а, следовательно, являются уже известными, заданными.

2. Типы экономических данных, используемых в эконометрических исследованиях.

Пространственные данные - характеризуют ситуацию по конкретной переменной (или набору переменных), относящейся к пространственно разделенным сходным объектам в один и тот же момент времени. Таковы, например, данные по курсам покупки или продажи наличной валюты в конкретный день по разным обменным пунктам г. Москвы. Другим примером является, скажем, набор сведений (объем производства, количество работников, доход и др.) по разным фирмам в один и тот же момент времени или период.

Временные ряды отражают изменения (динамику) какой-либо переменой на промежутке времени. В качестве примеров временных рядов можно привести ежеквартальные данные по инфляции, данные по средней заработной плате, национальному доходу и денежной эмиссии за несколько и др.

3. Специфика экономических данных.

В эконометрике решаются задачи описания данных, оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др.

При выборе методов анализа конкретных экономических данных следует учитывать, что экономические данные обладают рядом особенностей.

Многие экономические показатели неотрицательны. Значит, их надо описывать неотрицательными случайными величинами.

В экономике доля нечисловых данных существенно выше, чем в технике и, соответственно больше применений для статистики объектов нечисловой природы.

Количество изучаемых объектов в экономическом исследовании часто ограничено в принципе, поэтому обоснование вероятностных моделей в ряде случаев затруднено.

Экономические процессы развиваются во времени, поэтому большое место в эконометрике занимают вопросы анализа и прогнозирования временных рядов, в том числе многомерных. При этом следует отметить, что временные ряды качественно отличаются от простых статистических выборок. Эти особенности состоят в следующем:

1 последовательные по времени уровни временных рядов являются взаимозависимыми, особенно это относится к близко расположенным наблюдениям;

2 в зависимости от момента наблюдения уровни во временных рядах обладают разной информативностью: информационная ценность наблюдений убывает по мере их удаления от текущего момента времени;

3 с увеличением количества уровней временного ряда точность статистических характеристик не будет увеличиваться пропорционально числу наблюдений, а при появлении новых закономерностей развития она может даже уменьшаться.

4. Классификация эконометрических моделей.

Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических систем

- модели временных рядов;

- регрессионные модели с одним уравнением;

- системы одновременных уравнений.

Модели временных рядов. Модели временных рядов представляют собой модели зависимости результативного признака от времени. К ним относятся:

- модели кривых роста (трендовые модели),

- адаптивные модели,

- модели авторегрессии и скользящего среднего.

С помощью таких моделей можно решать задачи прогнозирования объема продаж, спроса на продукцию, краткосрочного прогноза процентных ставок и др.

Регрессионные модели с одним уравнением. В регрессионных моделях зависимая (объясняемая) переменная Y может быть представлена в виде функции f (X1, X2, X3, . Xk), где - независимые (объясняющие) переменные, или факторы; k - количество факторов. В качестве зависимой переменной может выступать практически любой показатель, характеризующий, например, деятельность предприятия или курс ценной бумаги. В зависимости от вида функции f () модели делятся на линейные и нелинейные. В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

Системы эконометрических уравнений. Сложные социально-экономические явления иногда невозможно адекватно описать с помощью только одного соотношения (уравнения). Модели с одним уравнением не отражают взаимосвязей между объясняющими переменными или их связей с другими переменными. Кроме того, некоторые переменные могут оказывать взаимные воздействия и трудно однозначно определить, какая из них является зависимой, а какая независимой переменной. Поэтому при построении эконометрической модели прибегают к системам уравнений.Для оценивания систем одновременных уравнений используются специальные методы. Эконометрические методы используются в экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Каждой области экономических исследований, связанной с анализом эмпирических данных, как правило, соответствуют свои эконометрические модели.

5. Основные этапы построения эконометрических моделей.

На первом постановочном этапе построения эконометрической модели формируются цели моделирования, определяется набор участвующих в модели факторов, т.е. устанавливается, какие из переменных будут рассматриваться как экзогенные, а какие как эндогенные и лаговые. Пусть У ={у1 у2 .уm}, множество эндогенных переменных; Х = {х1 х2 .хm} - множество экзогенных переменных.

Задачей экзогенного моделирования является получение каждой эндогенной переменной от совокупности экзогенных переменных и возможно отчасти эндогенных.

y1 = f (x1 . xk у2 . уm)

При этом зависимые переменных лаговые.

На 1-ом этапе осуществляется анализ экономической сущности изучаемой модели.

На 2-ом этапе осуществляется предварительный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации, относящейся к природе исходных стат. данных и случайных остаточных составляющих.

На 3-ем этапе выбор общего вида модели: парная, множественная; сколько должно войти факторов; линейная не линейная; а так же определение коэффициентов функции f.

4-ый этап отбор необходимой статистической информации и предварительный анализ данных.

5-ый этап - идентификация модели, т.е. стат анализ модели, стат оценка независимых параметров модели. Наиболее часто для оценки (нахождения) параметров модели применяют метод наименьших квадратов (МНК)

6-ой этап - сопоставление реальных и модельных значений. Иначе оценка адекватности и точности модели.

По точной и адекватной модели осуществляется прогнозирование.

6. Функциональные и стохастические типы связей. Ковариация, корреляция

Рассматривая зависимости между признаками, необходимо выделить, прежде всего, две категории зависимости: 1) функциональные и 2) корреляционные.

Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Так, величина начисленной заработной платы при повременной оплате труда зависит от количества отработанных часов.

В корреляционных связях между изменением факторного и результативного признака нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Основная задача корреляционного анализа заключается в выявлении взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации. Кроме того, с помощью корреляционного анализа решаются следующие задачи: отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связи между ними; обнаружение ранее неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между параметрами, но устанавливает численное значение этих связей и достоверность суждений об их наличии.

При проведении корреляционного анализа вся совокупность данных рассматривается как множество переменных (факторов), каждая из которых содержит n -наблюдений.

При изучении взаимосвязи между двумя факторами их, как правило, обозначают X= и Y=

Ковариация - это статистическая мера взаимодействия двух переменных.

Ковариация между двумя переменными рассчитывается следующим образом:

где - фактические значения случайных переменных X и Y,

. Ковариация зависит от единиц, в которых измеряются переменные .

Поэтому для измерения силы связи между двумя переменными используется другая статистическая характеристика, называемая коэффициентом корреляции.

Коэффициент парной корреляции

Для двух переменных коэффициент парной корреляции определяется следующим образом:

= где- оценки дисперсий величин .

7. Анализ линейной стат-кой связи экономических данных, корреляция, вычисление коэф-в корреляции. Проверка значимости

Большинство эконом. объектов находятся во всеохватывающей взаимосвязи. Наилучшим аппаратом явл-ся аппарат корреляционно-регрессионного анализа. Существует 2 вида зависимостей между эконом. переменными: 1) функциональная; 2) стохастическая (вероятностная). При функц-ой связи - каждому значению одной величины ставят в соответствие опр. значение другой. Такие встречаются редко. Как правило, по значению одной величины можно предсказать с опр. вероятностью значение другой (или найти мат. ожидание). Эта связь называется вероятностной, иногда применяют название "корреляционная зависимость". Между понятиями "корреляция" и "регрессия" существует связь и в то же время они различны. Корреляция позволяет установить тесноту и направление связи между переменными (коэф-ми корреляции). Регрессия определяет форму зависимости, функцию связи (модель регрессии). Корр. анализ предназначен для изучения характера связи между случ. переменными. Задачи корр. анализа: 1.оценка тесноты связи; 2. определение направления связи; 3. выбор ведущих факторов; 4. опр-е ранее неизвестных причинных связей. Виды корреляции: 1. по числу переменных: частная, парная и множественная; 2. по виду связей: линейная и нелинейная; 3. по направлению связи: прямая и обратная. Для решения задач корр. анализа применяются 3 коэф-та корреляции: 1. парный, 2. множественный, 3. частный.

Коэф-т парной линейной корреляции: . Свойства: 1) rx,y находится в инт-ле (-1;1); 2) rx,y>0 - связь прямая, rx,y<0 - связь обратная; 3) - связь тесная, - связь слабая. Для оценки стат. значимости коэф-та парной корреляции применяют t-критерий Стьюдента: n - количество данных в имеющихся совокупностях. Если tтабл<t, то коэф-т корреляции можно считать статистически значимым.

Коэффициент множественной корреляции. Корреляционная матрица не дает ответов на все вопросы, интересующие нас, для данной совокупности переменных. Возникают 2 дополнительные задачи: 1) как связана интересующая нас величина со всей совокупностью имеющихся факторов; 2) какой будет связь двух переменных при фиксировании или исключении влияния др. переменных. Для решения 1-ой задачи применяют коэф-т множественной корреляции: - определитель матрицы коэф-ов парной корреляции, Rjj - алгебраическое дополнение к элементу этой матрицы, стоящей на пересечении j-ой строки и j-ого столбца. Практическую зависимость имеет R2 - коэф-т детерминации, показывает, какая доля случайных колебаний одной величины обусловлена случайными колебаниями другой величины. Свойства: 1) R2 принадлежит интервалу (0;1); 2) - связь тесная.

Коэффициент частной корреляции. Этот коэф-т предназначен для оценки тесноты связи между 2-мя переменными при фиксировании или исключении влияния др. переменных. , Rxy - алгебраическое дополнение к элементу корреляционной матрицы, стоящему на пересечении строки х и столбца у. Аналогично Rxx, Ryy. Свойства rxy аналогичны свойствам rx,y.

8. Измерение тесноты связи между показателями. Анализ матрицы коэффициентов парной корреляции.

Коэф-т парной линейной корреляции: . Свойства: 1) rx,y находится в инт-ле (-1;1); 2) rx,y>0 - связь прямая, rx,y<0 - связь обратная; 3) - связь тесная, - связь слабая.

Пусть в исследовании используется совокупность переменных у1, х1, х2,., хm. Для каждой пары можно рассчитать коэф-ты парной линейной корреляции. В результате, получиться матрица коэф-в парной корреляции:

. Эта матрица симметрична относительно главной диагонали, т.е. состоит из двух одинаковых треугольников. Она позволяет выбрать факторы наиболее тесно связанные с интересующей нас величиной, а также установить связь между самими факторами. Как правило, в регрессионной модели нельзя включать факторы, тесно связанные между собой.

9. Регрессионный анализ. Зависимые и независимые переменные

Регрессионный анализ предназначен для исследования зависимости исследуемой переменной от различных факторов и отображения их взаимосвязи в форме регрессионной модели. В регрессионных моделях зависимая (объясняемая) переменная Y может быть представлена в виде функции f (), где - независимые (объясняющие) переменные, или факторы.

Связь между переменной Y и k независимыми факторами Х можно охарактеризовать функцией регрессии Y= f (), которая показывает, каково будет в среднем значение переменной yi, если переменные Xi примут конкретные значения. Данное обстоятельство позволяет использовать модель регрессии не только для анализа, но и для прогнозирования экономических явлений. Сформулируем регрессионную задачу для случая одного факторного признака.

Пусть имеется набор значений двух переменных: Y=- объясняемая переменная и X= - объясняющая переменная, каждая из которых содержит n наблюдений. Пусть между переменными X= и Y= теоретически существует некоторая линейная зависимость Данное уравнение будем называть "истинным" уравнением регрессии. Однако в действительности между X и Y наблюдается не столь жесткая связь. Отдельные наблюдения будут отклоняться от линейной зависимости в силу воздействия различных причин. Обычно зависимая переменная находится под влиянием целого ряда факторов, в том числе и не известных исследователю, а также случайных причин (возмущения и помехи); существенным источником отклонений в ряде случаев являются ошибки измерения. Отклонения от предполагаемой формы связи, естественно, могут возникнуть и в силу неправильного выбора вида самого уравнения, описывающего эту зависимость. Учитывая возможные отклонения, линейное уравнение связи двух переменных (парную регрессию) представим в виде , (2) где - постоянная величина (или свободный член уравнения), - коэффициент регрессии, определяющий наклон линии, вдоль которой рассеяны данные наблюдений. Это показатель, характеризующий изменение переменной , при изменении значения на единицу. Если - переменные и положительно коррелированные, если ? 0 - отрицательно коррелированны; - случайная переменная, или случайная составляющая, или остаток, или возмущение. Она отражает тот факт, что изменение будет неточно описываться изменением Х - присутствуют другие факторы, неучтенные в данной модели.

Таким образом, в уравнении (2) значение каждого наблюдения представлено как сумма двух частей - систематической и случайной . В свою очередь систематическую часть можно представить в виде уравнения Можно сказать, что общим моментом для любой эконометрической модели является разбиение зависимой переменной на две части - объясненную и случайную. .

10. Предпосылки применения МНК.

Свойства коэффициентов регрессии существенным образом зависят от свойств случайной составляющей. Для того чтобы регрессионный анализ, основанный на обычном методе наименьших квадратов, давал наилучшие из всех возможных результаты, должны выполняться следующие условия, известные как условия Гаусса - Маркова.

1. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю. Иногда случайная составляющая будет положительной, иногда отрицательной, но она не должна иметь систематического смещения ни в одном из двух возможных направлений.

2. В модели () возмущение (или зависимая переменная ) есть величина случайная, а объясняющая переменная - величина неслучайная.

Если это условие выполнено, то теоретическая ковариация между независимой переменной и случайным членом равна нулю.

3. предполагает отсутствие систематической связи между значениями случайной составляющей в любых двух наблюдениях. Например, если случайная составляющая велика и положительна в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что она будет большой и положительной в следующем наблюдении. Случайные составляющие должны быть независимы друг от друга.

В силу того, что , данное условие можно записать следующим образом:

Возмущения не коррелированны (условие независимости случайных составляющих в различных наблюдениях).

Это условие означает, что отклонения регрессии (а значит, и сама зависимая переменная) не коррелируют. Условие некоррелируемости ограничительно, например, в случае временного ряда . Тогда третье условие означает отсутствие автокорреляции ряда .

4. дисперсия случайной составляющей должна быть постоянна для всех наблюдений. Эта постоянная дисперсия обычно обозначается , или часто в более краткой форме , а условие записывается следующим образом:

Величина , конечно, неизвестна. Одна из задач регрессионного анализа состоит в оценке стандартного отклонения случайной составляющей. Это условие гомоскедастичности, или равноизменчивости случайной составляющей (возмущения).

Предположение о нормальности Наряду с условиями Гаусса- Маркова обычно также предполагается нормальность распределения случайного члена. Дело в том, что если случайный член нормально распределен, то так же будут распределены и коэффициенты регрессии.

11. Свойства оценок МНК

В тех случаях, когда предпосылки выполняются, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятельности и эффективности. Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.

Для практических целей важна не только несмещенность, но и эффективность оценок. Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. Поэтому несмещенность оценки должна дополняться минимальной дисперсией.

Степень достоверности доверительных интервалов параметров регрессии обеспечивается, если оценки будут не только несмещенными и эффективными, но и состоятельными. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки.

12. Лин модель парной регрессии. Оценка параметров модели с пом МНК.

Дня оценки параметров регрессионного уравнения наиболее часто используют метод наименьших квадратов (МНК).

Метод наименьших квадратов дает оценки, имеющие наименьшую дисперсию в классе всех линейных оценок, если выполняются предпосылки нормальной линейной регрессионной модели. МНК минимизирует сумму квадратов отклонения наблюдаемых значений от модельных значений .Согласно принципу метода наименьших квадратов, оценки и находятся путем минимизации суммы квадратов

по всем возможным значениям и при заданных (наблюдаемых) значениях.

В результате применения МНК получаем формулы для вычисления параметров модели парной регрессии.

Такое решение может существовать только при выполнении условия

что равносильно отличию от нуля определителя системы нормальных уравнений. Действительно, этот определитель равен

Последнее условие называется условием идентифицируемости модели наблюдений , и означает, что не все значения совпадают между собой. При нарушении этого условия все точки , лежат на одной вертикальной прямой

Оценки и называют оценками наименьших квадратов. Обратим внимание на полученное выражение для параметра . В это выражение входят суммы квадратов, участвовавшие ранее в определении выборочной дисперсии

и выборочной ковариации так что, в этих терминах параметр можно получить следующим образом: = ==

13. Показатели качества регрессии модели парной регрессии.

Коэффициент детерминации определяется следующим образом:

Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака Y учтена в модели и обусловлена влиянием на него факторов.

Чем ближе к 1, тем выше качество модели.

Для оценки качества регрессионных моделей целесообразно также использовать коэффициент множественной корреляции (индекс корреляции) R

Данный коэффициент является универсальным, так как он отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной модели он равен коэффициенту линейной корреляции .

Очевидно, что чем меньше влияние неучтенных факторов, тем лучше модель соответствует фактическим данным. Также для оценки качества регрессионных моделей целесообразно использовать среднюю ошибку аппроксимации:

Чем меньше рассеяние эмпирических точек вокруг теоретической линии регрессии, тем меньше средняя ошибка аппроксимации. Ошибка аппроксимации меньше 7 % свидетельствует о хорошем качестве модели.

14. Анализ статистической значимости параметров модели парной регрессии.

После того как уравнение регрессии построено, выполняется проверка значимости построенного уравнения в целом и отдельных параметров.

Оценить значимость уравнения регрессии - это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y

Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет. При этом выдвигают основную гипотезу о незначимости уравнения в целом, которая формально сводится к гипотезе о равенстве нулю параметров регрессии, или, что то же самое, о равенстве нулю коэффициента детерминации: . Альтернативная ей гипотеза о значимости уравнения - гипотеза о неравенстве нулю параметров регрессии.

Для проверки значимости модели регрессии используется F-критерий Фишера, вычисляемый как отношение дисперсии исходного ряда и несмещенной дисперсии остаточной компоненты. Если расчетное значение с ?1= k и ?2 = (n - k - 1) степенями свободы, где k - количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.

Для модели парной регрессии:

В качестве меры точности применяют несмещенную оценку дисперсии остаточной компоненты, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n- k -1), где k - количество факторов, включенных в модель. Квадратный корень из этой величины () называется стандартной ошибкой: Для модели парной регрессии:

15. Интервальная оценка параметров модели парной регрессии.

Линейная регрессия сводится к нахождению уравнения вида или .

Уравнение вида позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х.

Построение линейной регрессии сводится к оценке ее параметров а и в.

Оценки параметров линейной регрессии могут быть найдены разными методами.

1. 2.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Формально а - значение у при х = 0. Если признак-фактор

не имеет и не может иметь нулевого значения, то вышеуказанная

трактовка свободного члена, а не имеет смысла. Параметр, а может

не иметь экономического содержания. Попытки экономически

интерпретировать параметр, а могут привести к абсурду, особенно при а < 0.

Интерпретировать можно лишь знак при параметре а. Если а > 0, то относительное изменение результата происходит медленнее, чем изменение фактора.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции rxy. Существуют разные модификации формулы линейного коэффициента корреляции.

Линейный коэффициент корреляции находится и границах: -1?.rxy ? 1. При этом чем ближе r к 0 тем слабее корреляция и наоборот чем ближе r к 1 или -1, тем сильнее корреляция, т.е. зависимость х и у близка к линейной. Если r в точности =1или -1 все точки лежат на одной прямой. Если коэф. регрессии b>0 то 0 ?.rxy ? 1 и наоборот при b<0 -1?.rxy ?0. Коэф. корреляции отражает степени линейной зависимости м/у величинами при наличии ярко выраженной зависимости др. вида.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака y, объясняемую регрессией. Соответствующая величина характеризует долю дисперсии у, вызванную влиянием остальных не учтенных в модели факторов.

16. Проверка выполнения предпосылок МНК.

Основную информацию для анализа качества регрессионного уравнения можно получить из ряда остатков. Иногда только по одному графику остатков можно судить о качестве аппроксимации. Остатки модели должны обладать опр. свойствами: несмещенность, состоятельность, эффективность. На практике проверка этих свойств сводится к проверке 5 предпосылок МНК: 1.случайный характер остатков (критерий поворотных точек), 2.независимость уровней в ряде остатков (d-критерий Дарбина-Уотсона), 3.соответствие ряда остатков нормальному закону распределения(RS-критерий), 4.равенство 0 мат. ожидания остатков, 5.гомоскедастичность остатков.

1.Свойство случайности проверяется с помощью критерия поворотных точек или критерия пиков. Уровень в ряде остатков называется поворотной точкой, если он одновременно больше или одновременно меньше 2-ух соседних с ним уровней. Точкам поворота приписывают значения 1, остальным - 0. Свойство случайности выполняется, если количество поворотных точек справа означает, что от выражения внутри них нужно взять целую часть. n - количество уровней в ряде.

2.Для проверки свойства независимости (отсутствие автокорреляции) уровней в ряде остатков используют d-критерий Дарбина-Уотсона. В начале рассчитывают величину d по формуле:. Для этого критерия задаются 2 таблич. границы d1 и d2.

3.Для проверки соответствия ряда остатков нормальному закону распределения используют RS-критерий: RS =(Emax-Emin)/SE. Emax и Emin- соотв. наибольшее и наименьшее значения уровней в ряде остатков. SE- СКО. Если значение RS попадает в табличный интервал, то ряд остатков распределен по норм. закону.

4. Математическое ожидание остатков равно нулю: М (е) = 0. Используют t критерий Стьюдента. , где

Se - среднеквадратическое отклонение

если F расчетное <F критическим, то метемат ожидание остатков равно нулю.

5.Гомоскедастичность - постоянство дисперсии остатков по отношению к фактическим значениям фактора или показателя. Остатки называются гомоскедастичными, если они сосредоточены в виде горизонтальной полосы около оси xi, в противном случае остатки называют гетероскедастичными. Для исследования гомоскедастичности применяются различные тесты. Один из них называется тест Голдфельда-Квандта: 1) Упорядочение значений показателя у по степени возрастания фактора х. 2) Из упорядоченной совокупности убирают несколько "с" центральных значений: , р - число оцениваемых в модели параметров. В результате, получается 2 совокупности данных, в одной из них значения фактора будет наименьшими, а в другой - наибольшими. 3) Для каждой совокупности строят модель регрессии, по которой находят остатки: . Пусть S1 - большая сумма квадратов ошибок, а S2 - меньшая. 4) Определим отношение . 5) Полученное значение R сравнивают с табличным значением F-критерия Фишера. Если Fтабл<R, то предпосылка о гомоскедастичности нарушена. Чем больше R по отношению к Fтабл, тем более нарушена данная предпосылка. .

17. Интервалы прогноза по лин ур-нию парной регрессии. (Прогнозирование с применением ур-ния регрессии)

Регрессионные модели могут быть использованы для прогнозирования возможных ожидаемых значений зависимой переменной.

Прогнозируемое значение переменной получается при подстановке в уравнение регрессии ожидаемой величины фактора .

Данный прогноз называется точечным. Значение независимой переменной не должно значительно отличаться от входящих в исследуемую выборку, по которой вычислено уравнение регрессии.

Вероятность реализации точечного прогноза теоретически равна нулю. Поэтому рассчитывается средняя ошибка прогноза или доверительный интервал прогноза с достаточно большой надежностью.

Доверительные интервалы, зависят от следующих параметров:

- стандартной ошибки ,

- удаления от своего среднего значения ,

- количества наблюдений n

- и уровня значимости прогноза ?.

В частности, для прогноза будущие значения с вероятностью (1 - ?) попадут в интервал

Расположение границ доверительного интервала показывает, что прогноз значений зависимой переменной по уравнению регрессии хорош только в случае, если значение фактора Х не выходит за пределы выборки. Иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.

18. Понятие и причины гетероскедастичности. Последствия гетероскедастичности. Обнаружение гетероскедастичности.

Гомоскедастичность - постоянство дисперсии остатков по отношению к фактическим значениям фактора или показателя. Остатки называются гомоскедастичными, если они сосредоточены в виде горизонтальной полосы около оси xi, в противном случае остатки называют гетероскедастичными. Для исследования гомоскедастичности применяются различные тесты. Один из них называется тест Голдфельда-Квандта: 1) Упорядочение значений показателя у по степени возрастания фактора х. 2) Из упорядоченной совокупности убирают несколько "с" центральных значений: , р - число оцениваемых в модели параметров. В результате, получается 2 совокупности данных, в одной из них значения фактора будет наименьшими, а в другой - наибольшими. 3) Для каждой совокупности строят модель регрессии, по которой находят остатки: . Пусть S1 - большая сумма квадратов ошибок, а S2 - меньшая. 4) Определим отношение . 5) Полученное значение R сравнивают с табличным значением F-критерия Фишера. Если Fтабл<R, то предпосылка о гомоскедастичности нарушена. Чем больше R по отношению к Fтабл, тем более нарушена данная предпосылка. .

19. Нелинейная регрессия. Нелинейная модель и их линеаризация.

y=f(x) - общий вид. Если в качестве f использовать нелинейную математическую зависимость, то получиться нелинейная модель парной регрессии. Различают 2 класса нелинейных моделей:

1.модели нелинейные относительно фактора, но линейные относительно параметров:

*полиномиальные: у=а0+а1х+а2х2+а3х3+ Для перехода к линейной функции применяют простую замену переменных (х1=х2, х2=х3), у=а0+а1х+а2х1+а3х2.

*гиперболические: у=а0+а1/х, (х1=1/х); у=а0+а1х1.

1. степенную модель: у=ахв;

2. показательную: у=авх;

3. экспоненциальную: у=кеа+вх.

Модели являются нелинейными как относительно фактора, так и относительно параметра. Для их линеаризации использую процедуру логарифмирования. Таким образом, общая схема оценивания нелинейных моделей следующая:

1,линеаризация функции (простой заменой или логарифмированием);

2,оценка параметров линейной модели МНК;

3,обратный переход к исходному виду модели.

Различают 2 класса нелинейных регрессий:

-регрессии нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

-регрессии, нелинейные по включенным параметрам.

Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:

Полиномы разных степеней: y=a+bx+cx2+?, y=a+bx+cx2+dx3+ ?;

Равносторонняя гипербола:

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

Степенная y=axb ?

Показательная y=abx ?

Экспоненциальная у=уa+bx ?

Линеаризация нелинейной модели представляет собой преобразование используемой модели в линейную путем замены переменных на нестепенные.Так, в параболе второй степени у=а0+а1х+а2х2+ ? заменяя переменные х=х1, х2=х2, получим двухфакторное уравнение линейной регрессии: у=а0+а1х1+а2х2+ ?, для оценки параметров ? используется МНК.

21. Мультиколлинеарность. ЕЕ последствия. Способы обнаружения. Способы избавления.

Под мультиколлинеарностью понимается высокая взаимная коррелированность объясняющих переменных, которая приводит к линейной зависимости нормальных уравнений. Мультиколлинеарность может возникать в силу разных причин. Например, несколько независимых переменных могут иметь общий временной тренд, относительно которого они совершают малые колебания.Существует несколько способов для определения наличия или отсутствия мультиколлинеарности.Один из подходов заключается в анализе матрицы коэффициентов парной корреляции. Считают явление мультиколлинеарности в исходных данных установленным, если коэффициент парной корреляции между двумя переменными больше 0,8. Другой подход состоит в исследовании матрицы Х'Х. Если определитель матрицы Х'Х близок к нулю, то это свидетельствует о наличии мультиколлинеарности.

Для устранения или уменьшения мультиколлинеарности используется ряд методов. Наиболее распространенные в таких случаях следующие приемы: исключение одного из двух сильно связанных факторов, переход от первоначальных факторов к их главным компонентам, число которых быть может меньше, затем возвращение к первоначальным факторам.

Самый простой из них (но не всегда самый эффективный) состоит в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом какую переменную оставить, а какую удалить из анализа, решают в первую очередь на основании экономических соображений. Если с экономической точки зрения ни одной из переменных нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной.

Еще одним из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.

Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения - отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции, что позволяет последовательно отбирать факторы, оказывающие существенное влияние на результирующий признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов из содержательных соображений. При этом первым в уравнение включается фактор, наиболее тесно коррелирующий с Y, вторым в уравнение включается тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсию Y.

Вторая схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьший коэффициент t . После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если среди них опять окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна их этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

20. Модель множественной регрессии. Выбор вида модели и оценка ее параметров

Модель парной регрессии устанавливает зависимость интересующей нас величины только от 1-го фактора. На показатель влияет целая совокупность факторов. Если использовать линейную математическую функцию, то в этом случае модель множественной регрессии примет вид yi=a0+a1xi1+a2xi2+a3xi3+.+amxim+ei. Каждый из параметров модели аi показывает, на сколько меняется исследуемая величина у при изменении соответствующего фактора на 1 единицу. Эта модель универсальна в том смысле, что позволяет установить зависимость показателя, как от всей совокупности факторов, так и от каждого из них в отдельности. Эта модель применяется при изучении проблем спроса, функции доходности акции, функции издержек производства, функции прибыли

Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных.

В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

В зависимости от вида функции модели делятся на линейные и нелинейные.Модель множественной линейной регрессии имеет вид:y i = ?0 + ?1x i 1 +?2x i 2 +.+ ?k x i k + ?i (2.1)

- количество наблюдений.

Коэффициент регрессии ?j показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на единицу измерения, т. е. ?j является нормативным коэффициентом.

Коэффициент может быть отрицательным. Это означает, что область существования показателя не включает нулевых значений параметров. Если же а0>0, то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Анализ уравнения (2.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи:

(2.2) .

Где У - вектор зависимой переменной размерности п ? 1, представляющий собой п наблюдений значений .

Х- матрица п наблюдений независимых переменных , размерность матрицы Х равна п ? (k+1) . Дополнительный фактор Х0, состоящий из единиц, вводится для вычисления свободного члена. В качестве исходных данных могут быть временные ряды или пространственная выборка.

К - количество факторов, включенных в модель.

a - подлежащий оцениванию вектор неизвестных параметров размерности (k+1) ? 1;

- вектор случайных отклонений (возмущений) размерности п ? 1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных Х, так как существуют и другие факторы, неучтенные в данной модели.

Таким образом,

Y = ,

X = , , a = .

Уравнение (2.2) содержит значения неизвестных параметров ?0,?1,?2,. ,?k . Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид

, (2.3)

где A - вектор оценок параметров; е - вектор "оцененных" отклонений регрессии, остатки регрессии е = Y - ХА; -оценка значений Y, равная ХА.

22. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных.

При построении системы факторов необходимо соблюдать следующие условия: 1) должны быть количественно измеримы; 2) теоретически обоснованы; 3) линейно независимы друг от друга; 4) одна модель не должна включать в себя совокупный фактор и факторы его образующие; 5) тесно связаны между собой. Для реализации 5-го требования строят матрицу коэф-в парной корреляции. На основании этой матрицы выбирают те факторы, связь которых с величиной наиболее тесная. Затем проверяют наличие мультиколлинеарности (МК) факторов. Два фактора МК, если . МК факторы нельзя включать в одну модель, нужно выбрать один из них или заменить оба совокупной функцией.

Эта матрица симметрична относительно главной диагонали, т.е. состоит из двух одинаковых треугольников. Она позволяет выбрать факторы наиболее тесно связанные с интересующей нас величиной, а также установить связь между самими факторами. Как правило, в регрессионной модели нельзя включать факторы, тесно связанные между собой.

одним из возможных методов устранения или уменьшения мультиколлинеарности является использование стратегии шагового отбора, реализованную в ряде алгоритмов пошаговой регрессии.

Наиболее широкое применение получили следующие схемы построения уравнения множественной регрессии: метод включения факторов и метод исключения - отсев факторов из полного его набора.

В соответствии с первой схемой признак включается в уравнение в том случае, если его включение существенно увеличивает значение множественного коэффициента корреляции, что позволяет последовательно отбирать факторы, оказывающие существенное влияние на результирующий признак даже в условиях мультиколлинеарности системы признаков, отобранных в качестве аргументов из содержательных соображений. При этом первым в уравнение включается фактор, наиболее тесно коррелирующий с Y, вторым в уравнение включается тот фактор, который в паре с первым из отобранных дает максимальное значение множественного коэффициента корреляции, и т.д. Существенно, что на каждом шаге получают новое значение множественного коэффициента (большее, чем на предыдущем шаге); тем самым определяется вклад каждого отобранного фактора в объясненную дисперсию Y.

Вторая схема пошаговой регрессии основана на последовательном исключении факторов с помощью t -критерия. Она заключается в том, что после построения уравнения регрессии и оценки значимости всех коэффициентов регрессии из модели исключают тот фактор, коэффициент при котором незначим и имеет наименьший коэффициент t . После этого получают новое уравнение множественной регрессии и снова производят оценку значимости всех оставшихся коэффициентов регрессии. Если среди них опять окажутся незначимые, то опять исключают фактор с наименьшим значением t -критерия. Процесс исключения факторов останавливается на том шаге, при котором все регрессионные коэффициенты значимы.

Ни одна их этих процедур не гарантирует получения оптимального набора переменных. Однако при практическом применении они позволяют получить достаточно хорошие наборы существенно влияющих факторов.

23. .модель множеств регрессии.Выбор вида модели и оценка ее параметров.

Модель парной регрессии устанавливает зависимость интересующей нас величины только от 1-го фактора. На показатель влияет целая совокупность факторов. Если использовать линейную математическую функцию, то в этом случае модель множественной регрессии примет вид yi=a0+a1xi1+a2xi2+a3xi3+.+amxim+ei. Каждый из параметров модели аi показывает, на сколько меняется исследуемая величина у при изменении соответствующего фактора на 1 единицу. Эта модель универсальна в том смысле, что позволяет установить зависимость показателя, как от всей совокупности факторов, так и от каждого из них в отдельности. Эта модель применяется при изучении проблем спроса, функции доходности акции, функции издержек производства, функции прибыли

Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных .

В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

В зависимости от вида функции модели делятся на линейные и нелинейные.

Модель множественной линейной регрессии имеет вид:

y i = ?0 + ?1x i 1 +?2x i 2 +.+ ?k x i k + ?i (2.1)

- количество наблюдений.

Коэффициент регрессии ?j показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на единицу измерения, т. е. ?j является нормативным коэффициентом.

Коэффициент может быть отрицательным. Это означает, что область существования показателя не включает нулевых значений параметров. Если же а0>0, то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Анализ уравнения (2.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи:

(2.2) .

Где У - вектор зависимой переменной размерности п ? 1, представляющий собой п наблюдений значений .

Х- матрица п наблюдений независимых переменных , размерность матрицы Х равна п ? (k+1) . Дополнительный факторХ0, состоящий из единиц, вводится для вычисления свободного члена. В качестве исходных данных могут быть временные ряды или пространственная выборка.

К - количество факторов, включенных в модель.

a - подлежащий оцениванию вектор неизвестных параметров размерности (k+1) ? 1;

- вектор случайных отклонений (возмущений) размерности п ? 1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных , так как существуют и другие факторы, неучтенные в данной модели.

Таким образом,

Y = ,

X = , , a = .

Уравнение (2.2) содержит значения неизвестных параметров ?0,?1,?2,. ,?k

Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид

, (2.3)

где A - вектор оценок параметров; е - вектор "оцененных" отклонений регрессии, остатки регрессии е = Y - ХА; -оценка значений Y, равная ХА.

24. Оценка параметров множественной регрессии методом наименьших квадратов (МНК). Свойства оценок МНК.

Построение уравнения регрессии осуществляется, как правило МНК, суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:

.

Формулу для вычисления параметров регрессионного уравнения по методу наименьших квадратов приведем без вывода

(2.4).

Для того чтобы регрессионный анализ, основанный на обычном методе наименьших квадратов, давал наилучшие из всех возможных результаты, должны выполняться следующие условия, известные как условия Гаусса - Маркова.

Первое условие. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю. Иногда случайная составляющая будет положительной, иногда отрицательной, но она не должна иметь систематического смещения ни в одном из двух возможных направлений.

Фактически если уравнение регрессии включает постоянный член, то обычно это условие выполняется автоматически, так как роль константы состоит в определении любой систематической тенденции У, которую не учитывают объясняющие переменные, включенные в уравнение регрессии.

Второе условие означает, что дисперсия случайной составляющей должна быть постоянна для всех наблюдений. Иногда случайная составляющая будет больше, иногда меньше, однако не должно быть априорной причины для того, чтобы она порождала большую ошибку в одних наблюдениях, чем в других.

Эта постоянная дисперсия обычно обозначается , или часто в более краткой форме , а условие записывается следующим образом:

. Выполнимость данного условия называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью, (непостоянством дисперсии отклонений).

Третье условие предполагает отсутствие систематической связи между значениями случайной составляющей в любых двух наблюдениях. Например, если случайная составляющая велика и положительна в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что она будет большой и положительной в следующем наблюдении. Случайные составляющие должны быть независимы друг от друга.

В силу того, что , данное условие можно записать следующим образом:

Возмущения не коррелированны (условие независимости случайных составляющих в различных наблюдениях).

Это условие означает, что отклонения регрессии (а значит, и сама зависимая переменная) не коррелируют. Условие некоррелируемости ограничительно, например, в случае временного ряда . Тогда третье условие означает отсутствие автокорреляции ряда .

Четвертое условие состоит в том, что в модели (2.1) возмущение (или зависимая переменная ) есть величина случайная, а объясняющая переменная - величина неслучайная.

Если это условие выполнено, то теоретическая ковариация между независимой переменной и случайным членом равна нулю.

Наряду с условиями Гаусса- Маркова обычно также предполагается нормальность распределения случайного члена.

В тех случаях, когда выполняются предпосылки, оценки, полученные по МНК, будут обладать свойствами несмещенности, состоятельности и эффективности.

25. Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.

Оценка отсутствия автокорреляции остатков(т.е. значения остатков ei распределены независимо друг от друга). Автокорреляция остатковозначает наличие корреляции между остатками текущих и предыдущих (последующих)наблюдений. Коэффициент корреляции между ei и ej

, где ei - остатки текущих наблюдений,

ej-остатки предыдущих наблюдений, может быть определ по обычной формуле лин.коэффиц. корреляции. Если этот коэффициент окажется существенно отличным от нуля, то остатки

автокоррелированы и функция плотности вероятности F(e) зависит j-й

точки наблюдения и от распределения значений остатков в других точках

наблюдения. Для регрессионных моделей по статической информации автокорреляция

остатков может быть подсчитана, если наблюдения упорядочены по фактору х. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии. Особенно актуально соблюдение данной предпосылки МНК при построении регрессионных моделей по рядам динамики, где ввиду наличия тенденции последующие уровни динамического ряда, как

правило, зависят от своих предыдущих уровней.

Для проверки свойства независимости (отсутствие автокорреляции) уровней в ряде остатков используют d-критерий Дарбина-Уотсона. В начале рассчитывают величину d по формуле:. Для этого критерия задаются 2 таблич. границы d1 и d2.

26. Проверка качества многофакторных регрессионных моделей. Оценка качества всего ур-ния регрессии.

Качество модели регрессии связывают с адекватностью модели наблюдаемым (эмпирическим) данным. Проверка адекватности (или соответствия) модели регрессии наблюдаемым данным проводится на основе анализа остатков - .

Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод оценки коэффициентов. Согласно общим предположениям регрессионного анализа, остатки должны вести себя как независимые (в действительности, почти независимые) одинаково распределенные случайные величины.

Качество модели регрессии оценивается по следующим направлениям:

1) проверка качества всего уравнения регрессии;

2) проверка значимости всего уравнения регрессии;

3) проверка статистической значимости коэффициентов уравнения регрессии;

4) проверка выполнения предпосылок МНК.

27. Проверка качества многофакторных регрессионных моделей.Коэф-т детерминации R2. Скорректированный R2. Проверка гипотез с пом т-статистик и ф-статистик.

При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом:

, (2.5)

где - среднее значение зависимой переменной,

- предсказанное (расчетное) значение зависимой переменной.

Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака Y учтена в модели и обусловлена влиянием на него факторов.

Чем ближе к 1, тем выше качество модели.

Для оценки качества регрессионных моделей целесообразно также использовать коэффициент множественной корреляции (индекс корреляции) R

R== 2,6

Данный коэффициент является универсальным, так как он отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. Важным моментом является проверка значимости построенного уравнения в целом и отдельных параметров. Оценить значимость уравнения регрессии - это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y

Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет. Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с ?1= k и ?2 = (n - k - 1) степенями свободы, где k - количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.

(2.7)

В качестве меры точности применяют несмещенную оценку дисперсии остаточной компоненты, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n- k -1), где k - количество факторов, включенных в модель. Квадратный корень из этой величины () называется стандартной ошибкой:

(2.8)

Значимость отдельных коэффициентов регрессии проверяется по t-статистике путем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена):

, (2.9)

где Saj - это стандартное (среднеквадратическое) отклонение коэффициента уравнения регрессии aj. Величина Saj представляет собой квадратный корень из произведения несмещенной оценки дисперсии и j -го диагонального элемента матрицы, обратной матрице системы нормальных уравнений.

где - диагональный элемент матрицы .

Если расчетное значение t-критерия с (n - k - 1) степенями свободы превосходит его табличное значение при заданном уровне значимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует исключить из модели (при этом ее качество не ухудшится).

Проверка выполнения предпосылок МНК.

Рассмотрим выполнение предпосылки гомоскедастичности, или равноизменчивости случайной составляющей (возмущения).

Невыполнение этой предпосылки, т.е. нарушение условия гомоскедастичности возмущений означает, что дисперсия возмущения зависит от значений факторов. Такие регрессионные модели называются моделями с гетероскедастичностью возмущений.

Обнаружение гетероскедастичности

Для обнаружения гетероскедастичности обычно используют тесты, в которых делаются различные предположения о зависимости между дисперсией случайного члена и объясняющей переменной: тест ранговой корреляции Спирмена, тест Голдфельда - Квандта, тест Глейзера, двусторонний критерий Фишера и другие [2].

При малом объеме выборки для оценки гетероскедастичности может использоваться метод Голдфельда - Квандта.

Данный тест используется для проверки такого типа гетероскедастичности, когда дисперсия остатков возрастает пропорционально квадрату фактора. При этом делается предположение, что, случайная составляющая распределена нормально.

Чтобы оценить нарушение гомоскедастичности по тесту Голдфельда - Квандта необходимо выполнить следующие шаги.

1.Упорядочение п наблюдений по мере возрастания переменной х.

2.Исключение средних наблюдений ( должно быть примерно равно четверти общего количества наблюдений).

3.Разделение совокупности на две группы (соответственно с малыми и большими значениями фактора ) и определение по каждой из групп уравнений регрессии.

4.Определение остаточной суммы квадратов для первой регрессии и второй регрессии .

5.Вычисление отношений (или ). В числителе должна быть большая сумма квадратов.

Полученное отношение имеет F распределение со степенями свободы k1=n1-k и k2=n-n1-k, (k- число оцениваемых параметров в уравнении регрессии).

Если , то гетероскедастичность имеет место.

Чем больше величина F превышает табличное значение F -критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

28. Оценка существенности параметров линейной регрессии.

Проведем оценку качества построенной моедли:А) оценим значимость уравнения регрессии, иначе ответим на вопрос, соответствует построенная математическая модель фактическим данным и достаточна ли выкюч в уравнение х-фактроров для объяснения изменения результативного показателя.

Для проверки значимости модели уравнения регрессии используется F-критерий Фишера по ? вычисляется F расчетное.

, Fрасч сравнивается с F крит с 2-я степенями свободы: ?1 = n-1, ?2 = n-k-1, где k - кол-во оцениваемых параметров. /k=1/

Если Fрасч > с F крит, то уравнение считается значимым, в противном случае ур-ие не значимо.

Надежность получаемых оценок а и b зависит от ошибки ?.

Нужно найти среднюю квадратическую ошибку

, где Для значимого ур-я регрессии строят интервальные оценки параметров a и b.

Интервальная оценка параметра a, есть:

Замечание: если интервальные границы в разные по знаку, то такие уравнения в прогнозировании использовать нельзя, т.е. непонятно какое направление.

Оценка существенности параметров линейной регрессии.

Проверка значимости параметров проводится на основе t-критерия Стьюдента. Вначале рассчитывают стандартную ошибку модели Se. . Затем определяют стандартные ошибки каждого параметра уравнения: .

Если tтабл<, то соотв. параметр уравнения считают статистически значимым tтабл=t(;n-k-1). Замечание: используя t-критерий можно опр-ть интервальные оценки для параметров регрессионного уравнения:

29. Оценка влияния факторов на зависимую переменную (коэф-ты эл-ти,бета коэф-ты)

Влияние факторов на зависимую переменную оцениваются с помощью коэффициентов эластичности и ?-коэффициентов.

Он показывает на сколько % увеличится результативный показатель У при увеличении соответствующего j-ого фактора на 1%.

, где

и он показывает на какую величину своего среднего квадратического отклонения изменится результативный показатель У при увеличении соответствующего j-ого фактора на 1-о свое среднеквадратическое отклонение.

3. rj - коэф-т парной корреляции. коэф-т показывает среднюю долю влияния j фактора в совокупном влиянии всех факторов.

К-т эластичности: . Он показывает, на сколько % изменяется зависимая переменная при изменении фактора j на 1%.

Бета-к-т:

, где ;- среднеквадратические отклонения.

Бета-к-т показывает, на какую часть величины среднего квадратического отклонения Sy тзменится зависимая переменная Y с изменением соответствующий независимой переменной Xj на величину среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных переменных.

30. Анализ эк объектов и прогнозирование с помощью модели множ регрессии.

Уравнение регрессии применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза.

Для того чтобы определить область возможных значений результативного показателя, при рассчитанных значениях факторов следует учитывать два возможных источника ошибок: рассеивание наблюдений относительно линии регрессии и ошибки, обусловленные математическим аппаратом построения самой линии регрессии. Ошибки первого рода измеряются с помощью характеристик точности, в частности, величиной . Ошибки второго рода обусловлены фиксацией численного значения коэффициентов регрессии, в то время как они в действительности являются случайными, нормально распределенными.

Для линейной модели регрессии доверительный интервал рассчитывается следующим образом. Оценивается величина отклонения от линии регрессии (обозначим ее U):.

где .

32. Регрессионные модели с переменной структурой (фиктивные переменные)

Термин "фиктивные переменные" используется как противоположность "значащим" переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная - это индикаторная переменная, отражающая качественную характеристику. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными

При построении регрессионного уравнения используются факторы, являющиеся количественными характеристиками. Иногда требуется ввести в модель регрессии некий качественный фактор. Это могут быть разного рода атрибутивные признаки (пол, образование, принадлежность к какому-либо региону и т.д.). чтобы ввести такие переменные в уравнение, их нужно преобразовать в количественные. Пусть у - цена квартиры, х - общая площадь квартиры, тогда общий вид регрессионного уравнения примет вид, у=а0+а1х. Сконструируем фиктивную переменную, означающую принадлежность квартиры к центральным или периферическим частям города. . Тогда получается уравнение 2-ухфакторной регрессии: y=a0+a1x+a2z. В этом уравнении параметр а2 показывает, на сколько дороже квартира в центре по сравнению с периферией города.

33. Многомерный статистический анализ. Задачи классификации объектов: кластерный анализ, дискриминантный анализ.

МСА - одно из направлений развития одномерной статистики. В наст. вр. в условиях рыночной экономики методы многомерного анализа актуальны, т.к. соответствуют многовариантному подходу. В МСА выделяют 3 группы методов: 1. факторный анализ, 2. кластерный анализ, 3. дискриминантный анализ. Факторный анализ предназначен для выявления в данной совокупности латентных (неявных) признаков, характеризующих систему. Экономическая система описывается большим числом показателей, что неудобно для анализа. За счет вращения этих показателей (опр. линейных комбинаций) исходная совокупность данных сокращается за счет замены ее главными факторами. Задачи: 1. отыскание скрытых, но объективно существующих закономерностей; 2. сжатие информации; 3. выделение главных факторов; 4. построение регрессионных моделей.

Кластерный анализ - это совокупность методов, позволяющих классифицировать многомерные наблюдения, каждое из которых описывается набором признаков (параметров) Х{9 Х2,., Л^. Целью кластерного анализа является образование групп схожих между собой объектов, которые принято называть кластерами (класс, таксон, сгущение).

Кластерный анализ - одно из направлений статистического исследования. Особо важное место он занимает в тех отраслях науки, которые связаны с изучением массовых явлений и процессов. Необходимость развития методов кластерного анализа и их использования продиктована тем, что они помогают построить научно обоснованные классификации, выявить внутренние связи между единицами наблюдаемой совокупности. Кроме того, методы кластерного анализа могут использоваться в целях сжатия информации, что является важным фактором в условиях постоянного увеличения и усложнения потоков статистических данных.

Методы кластерного анализа позволяют решать следующие задачи [2]:

• проведение классификации объектов с учетом признаков, отражающих сущность, природу объектов. Решение такой задачи, как правило, приводит к углублению знаний о совокупности классифицируемых объектов;

• проверка выдвигаемых предположений о наличии некоторой структуры в изучаемой совокупности объектов, т.е. поиск существующей структуры;

Дискриминантный анализ является разделом многомерного статистического анализа, который включает в себя методы классификации многомерных наблюдений по принципу максимального сходства при наличии обучающих признаков.

Напомним, что в кластерном анализе рассматриваются методы многомерной классификации без обучения. В дискрими-нантном анализе новые кластеры не образуются, а формулируется правило, по которому объекты подмножества подлежащего классификации относятся к одному из уже существующих (обучающих) подмножеств (классов), на основе сравнения величины дискриминантной функции классифицируемого объекта, рассчитанной по дискриминантным переменным, с некоторой константой дискриминации.

Наиболее часто используется линейная форма дискриминантной функции, которая представляется в виде скалярного произведения векторов А=(а1,а2,.,аp дискриминантных множителей и вектора Хi=(хi1,хi2,.,хip) дискриминантных переменных:

или

Здесь Xi - транспонированный вектор дискриминантных переменных; хij - значений j-х признаков у i-го объекта наблюдения.

34. МСА. Задачи снижения размерности: факторный анализ, компонентный анализ.

МСА - одно из направлений развития одномерной статистики. В наст. вр. в условиях рыночной экономики методы многомерного анализа актуальны, т.к. соответствуют многовариантному подходу. В МСА выделяют 3 группы методов: 1. факторный анализ, 2. кластерный анализ, 3. дискриминантный анализ. Факторный анализ предназначен для выявления в данной совокупности латентных (неявных) признаков, характеризующих систему. Экономическая система описывается большим числомпоказателей, что неудобно для анализа. За счет вращения этих показателей (опр. линейных комбинаций) исходная совокупность данных сокращается за счет замены ее главными факторами. Задачи: 1. отыскание скрытых, но объективно существующих закономерностей; 2. сжатие информации; 3. выделение главных факторов; 4. построение регрессионных моделей.

Метод гл. компонент.

Во многих задачах обработки многомерных наблюдений и в частности в задачах классификации исследователя интересуют лишь те признаки, ? обнаруживают наибольшую изменчивость при переходе от одного объекта к др. С др стороны не обязательно для описания состояния объекта использовать какие-то из исходных замеренных на нем признаки (например, портной делает М изделий но для покупки достаточно 2 значения : рост и объем груди). Следуя общей оптимальности постановок задачи снижения размерности выражения:

, можно принять в качестве меры информативности p`-мерной системы показателей. Тогда при любом фиксированном р` вектор Z искомых показателей вспомогательных переменных (новых) определяется как линейная комбинация Z= исходных данных, где - вектор центрированных исходных данных.

- принцип строки, ? удовлетворяет условию ортагональностьи.

Полученных т.о. переменные и называют гл. компонентами.

35. Системы линейных одновременных уравнений (СОУ). Взаимозависимые и рекурсивные системы.

Регрессионное уравнение устанавливает зависимость одной величины от совокупности факторов. Как правило, нас может интересовать целый ряд величин у1, у2, у3., которые зависят как от факторов, так и между собой. Для отображения такой паутины взаимосвязей используются системы уравнений. Они бывают 3 видов: 1. системы независимых уравнений; 2. рекурсивные системы; 3. системы взаимозависимых уравнений.

Рекурсивные системы:

Первое уравнение в таких системах является моделью множественной регрессии. В каждом последующем будут содержаться как все независимые факторы, так и зависимые переменные, оцененные ранее (предопределенные). Такие системы могут использоваться для анализа производительности труда и фондоотдачи.

Системы взаимозависимых уравнений:

Эти системы используют для анализа динамики цены и зарплаты.

36. Косвенный МНК

КМНК прим-ся в случае точно идентифицир-й структур-ой модели. Этапы примен-я:

1. По структур-й форме модели формальным образом выписывается приведенная форма модели.

2. Для каждого урав-я привед-й формы модели обычным МНК оцен-ся приведенный коэф-ты.

3. Коэф-ты прив-ой формы модели транс-ся в параметры структурной модели.

Пример:

Приведенная форма модели составит:

Где u1, u2 - случ-е ошибки приведенной формы модели

Из 2-го уравнения выведем значение х2 через остальные переменные:

Подставляем в первое уравнение ПФМ:

И приводим подобные слагаемые.

Потом также из первого уравнения выражаем значение х1 через у1 и х2.

37. Системы линейных одновременных уравнений.Условия идентификации

Для существования однозначного соответствия между параметрами структурной и приведенной формами необходимо выполнение условия идентификации.

Структурные формы модели могут быть:

• идентифицируемые;

• неидентифицируемые;

• сверхидентифицируемые.

Для того чтобы СФМ была идентифицируема, необходимо, чтобы каждое уравнение системы было идентифицируемо. В этом случае число параметров СФМ равно числу параметров приведенной формы. Если хотя бы одно уравнение СФМ неидентифицируемо, то вся модель считается неидентифицируемой. В этом случае число коэффициентов приведенной формы модели меньше, чем число коэффициентов СФМ. Т.о. каждое структурное уравнение д.б. проверено на идентифицируемость. Идентификация одного уравнения зависит не столько от самого уравнения, сколько от вида структурных уравнений модели. Идентифицируемость структурных уравнений означает, что путем линейной комбинации некоторых или всех уравнений модели невозможно получить ни одного уравнения,, которое бы противоречило модели и параметры которого отличались бы от параметров структурных уравнений, подлежащих оценке. Если эконометрическая модель не идентифицируема. То нельзя оценить параметры модели. В этом случае необходима новая формулировка всей модели или отдельных ее уравнений.

Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае можно получить два и более значений одного структурного коэффициента на основе коэффициентов приведенной формы модели. В сверхидентифицируемой модели хотя бы одно уравнение сверхидентифицируемо, а остальные уравнения идентифицируемы.

Если обозначить число эндогенных переменных в i-м уравнении СФМ через H, а число предопределенных переменных, которые содержатся в системе, но не входят в данное уравнение, через D то условие идентифицируемости модели может быть записано в виде следующего счетного правила:

• если D+ 1 < Н уравнение неидентифицируемо;

• если D+ 1 = Н уравнение идентифицируемо;

• если D+ 1 > Н уравнение сверхидентифицируемо.

Счетное правило является необходимым, но не достаточным

условием идентификации. Кроме этого правила для идентифицируемости уравнения должно выполняться дополнительное условие.

Отметим в системе эндогенные и экзогенные переменные, отсутствующие в рассматриваемом уравнении, но присутствующие в системе. Из коэффициентов при этих переменных в других уравнениях составим матрицу. При этом если переменная стоит в левой части уравнения, то коэффициент надо брать с обратным знаком. Если определитель полученной матрицы не равен нулю, а ранг не меньше, чем количество эндогенных переменных в системе без одного, то достаточное условие идентификации для данного уравнения выполнено.

Показать полностью…
Похожие документы в приложении